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State and transition models for rangelands.
5. The use of state and transition models for predicting

vegetation change in rangelands

J.C. SCANLAN
Land Protection Branch, Department of Lands,
Brisbane, Queensland, Australia

Abstract

State and transition models are similar in nature
to Markov models which have been applied in the
field of ecology since the 1960s. Variations to true
Markov processes that have been used in ecology
include second-order, discrete Markov and semi-
Markov processes and continuous-time Markov
processes.

The uses of discrete-time and continuous-time
Markov models are discussed. Three examples of
how vegetation dynamics can be simulated by
Markov models are presented. The way in which
altered climate may alter the course of vegetation
change is described for Prosopis savanna in south
Texas (USA). Chemical control strategies for
Acacia nilotica management in north-western
Queensland were compared by incorporating a
Markov model into a simulation model which
included the effect of woody vegetation on pas-
ture growth, as well as prediction of liveweight
gain of cattle. The impact of altering grazing
pressure on pasture composition change is pre-
sented using a continuous-time Markov model of
pastures in tropical woodlands of northern
Australia.

These examples indicate how state and transi-
tion models can be used. State and transition
models may be used for prediction and analysis
in addition to aiding communication. The integra-
tion of Markov models into process models
shows promise for devising complex management
models for rangelands.

Correspondence: J.C. Scanlan, Land P\rotec[ion Branch,
Department of Lands, Locked Bag 40, Coorparoo Delivery
Centre, Qld 4151, Australia

Introduction

State and transition models are similar in struc-
ture to models based on Markov processes
(named after the work of A.A. Markov in the
early 1900s). The use of Markov models in
biology has dated from the 1960s (Anderson
1966), their appeal being that they are the most
tractable form of stochastic mathematical models.
However, Hill (1982) dismissed the use of
Markov models in ecology because “the wortld is
not that neat”. The inherent problems of transi-
tion matrix models are well known (see van Hulst
1979; Usher 1979). Nevertheless, this approach
has provided insight into vegetation dynamics
when other approaches were not possible
(Enright and Ogden 1979; Lippe et al. 1985).
Thus, the use of Markov models can be justified,
especially when enhancements to the simple
Markov process are included to address the situa-
tions where the assumptions of Markov processes
are violated.

There are 2 forms of Markov models — one is
based on discrete-time and the other on contin-
uous-time theories. Two related mathematical
models are Leslie matrix models and semi-
Markov models. All variants will be considered in
this paper, together with examples of the use of
Markov models to describe woody plant
dynamics and management, and pasture
dynamics in tropical woodlands.

Model types

Markov models — general characteristics

A simple Markov model has 3 requirements: (1) a
finite number of discrete, identifiable states;
(2) the transition probabilities; and (3) the initial
conditions. From these, the state of the system at
any future time can be determined.

A Markov chain describes a system which
moves from one state to another in a stochastic
manner. The transition probabilities depend only
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on the immediately preceding state and not on
any other state of the system. This system can be
expressed in matrix notation as:

Ximu=P X, Eql
where Xy, and X; are vectors whose elements are
proportions of the system in that state, and P is a
square matrix of transition probabilities i.e. prob-
ability of moving from each state to all other
states during one time period.

Two major assumptions of Markov models are
that: (1) the transition probabilities between states
are constant over time (stationarity); and (2) the
transition probabilities depend on the preceding
state only and are independent of previous transi-
tions (the Markov property holds). This definition
means that Markov processes are first-order pro-
cesses; however, higher-order processes are
sometimes referred to as Markov processes.

Markov models — discrete-time

The transition matrix is composed of probabilitics
of moving to state i from state j (p;). In models of
vegetation change, these probabilities represent
the proportion of the area in state i changing to
state j during one time step.

First-order, linear, stationary processes (Equa-
tion 1) reach a steady state vector after a large
number of time steps. This state vector is inde-
pendent of the starting conditions provided the
sum of the column elements in the matrix P sum
to 1. A vector Xpie exists such that:

Xswapte = P. X stable Eq 2

In relation to ecological succession, X has
been interpreted as the composition of the climax
community. Mathematically, this vector is the
right eigenvector of P. The largest eigenvalue of
the matrix is 1, indicating that there is no net
change to the sum of the state vector.

The assumption of stationarity is seldom valid
in ecological studies because climate and distur-
bance are essentially stochastic processes (Usher
1979; Lippe et al. 1985). To model non-stationary
Systems, several transition matrices may be used
in a model, with each matrix being appropriate
for a particular set of environmental conditions
(e.g. periods of contrasting annual rainfall as used
by Burrows ez al. (1985)). Another approach is to
observe the system for a number of time steps
and develop a “mean” transition matrix (Huen-
neke and Marks 1987). As in any averaging
method, there is a loss of information whenever
this method is used. The use of multiple transition

matrices makes it impossible to obtain an analyt-
ical solution for the composition of the stable
state vector. Simulation modelling can be used to
estimate the state vector for any particular sce-
nario. Finding the mean of many simulations can
give a pseudo-stable state vector.

The Markov property does not hold when past
history influences future changes. Such a case
may exist in shrub invasion of grasslands. The
probability of transition from a grassland to a
shrub-covered state may be influenced by
whether or not that area had been covered by
shrubs at any previous stage. Soil seed reserves
and possible soil modifications caused by the
presence of shrubs may influence the probability
of shrubs recolonising the grassland. These cases
are sometimes referred to as higher-order Markov
processes.

Higher-order Markov models can simulate
situations where previous conditions influence
rates of transition, but there are often insufficient
data on which to set model parameters and to
validate a model. Conceptually, this is done by
increasing the number of states. Thus, the states
mentioned above would be grassland-grassland
and shrubland-grassland — in both cases the
present state is grassland but the previous state
was different.

Spatial autocorrelations also violate the
assumptions of Markov models because not all
entities within one state have equal probability of
moving between states. For example, an area of
grassland would have a higher probability of
becoming covered in woody plants if the area was
surrounded by woodland than if it was sur-
rounded by grassland. Thus, a model of vegeta-
tion change in patchy systems should take
account of this spatial variability. Conceptually,
the way this could be handled is similar to the
case of higher-order Markov processes — new
states would have to be defined (e.g. grassland
surrounded by grassland; grassland surrounded
by woodland), each with a different probability of
transition. Separate simulations would be run for
each different condition or situation,

In a true Markov process, the probability of
each transition remains constant over time. How-
ever, there are many cases where the probabilities
change according to the level of some resource or
environmental characteristic, e.g. the probability
that a grassland area will become covered by
shrubs may be a function of the number of seeds
produced within the management unit, giving a
positive feedback — more trees produce more
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seeds which in turn increases the number of trees.
To allow for this, it is possible to make each tran-
sition a function rather than a constant. No stable
state vector exists if this is done.

Markov model — continuous-time

An essential assumption of the discrete-time
theory is that transitions occur at the end of a dis-
crete, predefined time interval (the model time
step). The transition probabilities are the likeli-
hood of a one-step change i.e. change from one
state through another to a third is not allowed. By
contrast, continuous-time theory allows transi-
tions at any instant in time. Instead of the tran-
sition being a probability of a one-step change,
the value is a mean transition rate (i.e. number of
transitions per unit time). Each transition has
associated with it a mean transition rate (average
number of transitions from state 1 to state j per
unit time, given that the system was in state i).

As with the discrete-time theory, the system is
assumed to exist in a number of defined states.
Each state has a set of characteristics that differ-
entiate that state from all others.

There are 4 basic assumptions for continuous-
time Markov models (derived from Phillips et al.
1976):

(1) The system is first-order, i.e. the future
state depends upon the current state of the
system, and not on any previous state. This is the
same as for the discrete-time version.

(2) The transition rates are constant over time
(stationarity). This is the same as for the discrete-
time version.

(3) The probability of transition from state i to
state j occurring in time interval At is propor-
tional to At.

(4) The number of transitions in /At is either 1
or 0. As At approaches zero, assumptions 3 and 4
become justified.

Some biological phenomena are continuous
(e.g. photosynthesis and respiration) and so a
continuous-time technique appears preferable to
discrete-time approaches for modelling plant
growth (Olson et al. 1985).

Semi-Markov processes

One of the major deficiencies of Markov models
in vegetation change is that changes associated
with plant aging and competitive interactions
cannot be simulated because of the first-order
nature of Markov chains (i.e. that any change to a

new state is affected only by the present state and
not by any previous state). The semi-Markov pro-
cess overcomes this difficulty.

The difference between a Markov process and
a semi-Markov process is that, in the latter, tran-
sitions need not occur at all time steps. Rather
there is a waiting time before a transition may
occur, and this waiting time can be selected from
a distribution that is specific to that state. At the
end of the waiting time, the state may undergo a
transition. Thus, the probabilities depend on
initial and destination states as well as on the
waiting time.

This process is discussed by Howard (1971),
and an ecological example is given by Moore
(1990). The mathematics are more complex than
for simple Markov models, but have similar
characteristics.

Leslie matrices

A Leslie matrix is a special case of a transition
matrix. The first row contains the number of off-
spring from each parent in that class (usually an
age or size class). The primary subdiagonal (the
line immediately below the main diagonal) con-
tains the probability of moving from one class to
the next highest. If this matrix is multiplied by a
vector containing the number of individuals in
each class, then the resultant vector is the new
class distribution (Leslie 1945). In animal popula-
tions, the rate of population increase can be deter-
mined from properties of the matrix. The rate of
population growth is the largest positive eigen-
value of the matrix. There is usually not a stable
state vector as the simulated population will be
increasing or decreasing. However, a stable pro-
portion of age/size classes is achieved after a
large number of time steps and the composition is
independent of the starting conditions. Leslie
matrix models are usually applied to animal pop-
ulations but the approach has been used to predict
stable age class distributions in forests (Usher
1972).

It can be argued that the use of Leslie matrices
is preferable to using differential equations as
reproduction is pulsed, rather than continuous as
implied by differential equations (¢.g. Malanson
1984). The time step used can be chosen to match
the required feature of the data. For animals, it
could be the inter-generational time span; for
annual plants the time between germination
events; and for trees the time to establishment of
juveniles.
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Case studies

In the following section, 3 examples of analysing
situations that are presented as state and transition
models are presented. The first 2 cases have no
system diagrams to represent them, as all transi-
tions between all states are possible in both sys-
tems. Both of these cases contain discrete-time
Markov models. The third case is a continuous-
time model representing pasture composition
change in northern Australian woodlands.

Case 1 — Predicting changes in Prosopis cover in
south Texas grassland

Introduction. The plains of southern Texas poten-
tially support an Andropogon-Setaria-Prosopis-
Acacia savanna. However, the region is now
dominated by a complex vegetation association
of thorny shrubs. The change in community
structure from grassland to thorn woodland began
in the mid-1800s and has been described by
Archer er al. (1988) and Scanlan and Archer
(1991).

Probabilities of vegetation transition were used
to explore the extent of changes in future land-
scape composition given a range of climatic sce-
narios. The probability of change between
various herbaceous and woody vegetation states
was determined from aerial photographs brack-
eting two periods of contrasting annual rainfall.
The resulting transition matrices were then used
to project future vegetation states under various
annual rainfall regimes.

Method. Vegetation states were defined on the
basis of work done by Archer et al. (1988) and
are shown in Table 1. Probabilities of transition

from one vegetation state to another were deter-
mined from grids superimposed on aerial photo-
graphs taken in 1941, 1960 and 1983. A grid of
cells (each cell representing 400m?) was superim-
posed on 1941 photographs and the dominant
class of vegetation noted for each cell. The same
grids were then placed on 1960 and 1983 photo-
graphs to coincide with placement on 1941
photographs and states of each cell reassessed.
From these data, the proportion of each vegeta-
tion class that changed to another class was cal-
culated. This was done for each period (1941-
1960 and 1960-1983). The 1941 landscape con-
sisted of herbaceous zones (6% of celis), wood-
land (50% of cells) and savanna parkland (44%
of cells with grass-woody plant mixtures).

During 19411960 there were several years of
severe drought, whereas rainfall between 1960
and 1983 was generally normal to above-normal.
The transition matrices developed for the 1941—
1960 and 1960-1983 periods are subsequently
referred to as DRY and WET, respectively. The
mairices for the 2 periods were significantly dif-
ferent (X2 =697; P<0.001) according to the
method of Anderson and Goodman (1957).

Transition matrix models were developed to
simulate changes in frequency distribution of the
7 vegetation classes described in Table 1. The
models can be described as non-stationary
Markov chains (Boyer 1979):

Xm=P,X, Eq3
where X, was the state vector at time ¢, P, was
one of the two 7 X 7 matrices (WET or DRY —
see Table 2) of transition probabilities. The time
step was 20 years. At each time step, a DRY or a
WET transition matrix was chosen randomly.

Table 1. Vegetation classes used to define states in the south Texas Prosopis savanna (from Scanlan and Archer 1991).

State Code Characteristics

Herbaceous H Grasses (Chloris cucullata, Bouteloua rigidiseta) and forbs.

Pioneer clusters P Cluster area <30m?2. Prosopis plant basal diameter < 10cm with 4-6 woody species in
understorey.

Mature clusters M Cluster area 30-300m?; typically 7-12 woody species; Prosopis basal diameter 10-30cm.

Coalesced clusters C Areas of extensive coalescence; discrete clusters not evident. Up to 15 woody species; numerous
Prosopis plants with basal diameters > 40cm.

Cm Coalesced cluster margins. This category was assigned where coalesced clusters (C) did not

fully occupy a cell.

Woodland w Closed-canopy woodland; 19 woody species.

occupy a cell.

Woodland margins. This category accounted for situations where woodlands (W) did not fully
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Tab!e 2 .Probabilities of vegetation change obtained from 3 sites over consecutive 20-year periods with contrasting patterns of
precipitation (1941-1960=DRY; 1960-1983=WET; see Figure 2). Vegetation states are defined in Table 1 (from Scanlan and Archer

1991).
DRY transitions, 1941-1960
w Wm C Cm M P H
w 0.873t 0.232 0.000 0.012 0.000 0.019 0.000
Wm 0.075 0.561 0.030 0.040 0.029 0.058 0.029
C 0.007 0.006 0.515 0.121 0.115 0.019 0.029
Cm 0.007 0.079 0.242 0.489 0.164 0.112 0.108
M 0.000 0.006 0.061 0.035 0.212 0.032 0.010
P 0.035 0.110 0.152 0.224 0.260 0.575 0471
H 0.003 0.006 0.000 0.081 0.221 0.184 0.353
WET transitions, 1960-1983
w Wm C Cm M P H
w 0.970! 0.497 0.373 0.132 0.044 0.088 0.019
Wm 0.027 0.429 0.090 0.126 0.065 0.121 0.086
C 0.003 0.000 0.328 0.137 0.196 0.036 0.019
Cm 0.000 0.042 0.119 0432 0.522 0.170 0.216
M 0.000 0.000 0.030 0.058 0.109 0.104 0.111
P 0.000 0.011 0.060 0.095 0.065 0.447 0.475
H 0.000 0.021 0.000 0.021 0.000 0.036 0.074

1 Probability of transition (py) from state j (column) to state i (row) in the 20-year time step from time t to t+1.

Historical records indicated that the long-term
Pwer was about 0.3-0.4 in the region.

A series of different precipitation scenarios
was simulated such that the probability of using
the WET transition matrix (Pwgr) at each time
step ranged from 0.0 (DRY always chosen) to 1.0
(WET always chosen). Data presented are means
for 30 replicate simulations which yielded stan-
dard errors of 2% for the proportion of the land-
scape cells occupied by each vegetation class. No
consistent changes in the proportion of the land-
scape occupied by vegetation classes were
observed after 50 time steps and these propor-
tions were used as the final (stable) state vector.
As mentioned previously, there is no analytical
solution possible to determine the stable state
vector given this form of the model.

Results and Discussion. Simulations suggest
the proportion of this landscape inhabited by
woodlands will continue to increase provided
Pwer > 0.20 (Table 3, Figure 1). The develop-
ment of woodlands would occur at the expense of
other vegetation classes, with only pioneer and
coalesced cluster classes making sizeable (about
10%) contributions (Table 3 for Pwgr<0.5).
Most of the predicted changes occurred within
200 years (10 time steps). At Pwer=0.20, the
predicted landscape vegetation composition was
very similar to the present-day situation (data not
shown).

The rate of succession to states of greater
woody cover increased as Pwer increased. Simu-
lations based on Pwgr >0.2 suggest the present
landscape is unstable and will develop into a
closed-canopy woodland within the next 180
years, assuming the processes operating between
1941-1983 continue (e.g. grazing by cattle and
lack of fire).

Sensitivity analysis and simulations of vegeta-
tion changes prior to 1941 are presented in
Scanlan and Archer (1991).

Conclusion. This analysis provides an example
of how the lack of stationarity can be overcome.
In this case, 2 matrices were chosen with dif-
fering probabilities. Any number of matrices
could be used, provided there were sufficient data
to develop them.

Case 2 — Comparing alternative management
options

Introduction. Prickly acacia (Acacia nilotica) is a
serious exotic weed of northern Australia, partic-
ularly the mitchell (Astrebla spp.) grasslands of
Queensland. This shrub has spread rapidly since
the 1970s with a combination of high rainfall
years and a change from mainly sheep grazing to
mixed sheep and cattle. About 7 million ha of
mitchell grasslands now support at least some
prickly acacia plants (Carter et al. 1989).
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Figure 1. Mean predicted changes in the proportion of selected vegetation states (Table 1) in a Prosopis savanna
parkland in southern Texas based on Pypr=0.4. Data represent the mean of 30 simulations, with actual data plotted for
1941, 1960 and 1983. (Adapted from Scanlan and Archer 1991).

Table 3. Initial landscape status and predicted final state vectors (% after 50 time steps) for simulations under a series of rainfall
regimes. State vectors represent the percentage of cells on the landscape dominated by each vegetation class (adapted from Scanlan
and Archer 1991).

Pwer!
Vegetation state Initial 0.00 0.33 0.50 1.0
Woodland 502 37 69 77 98
,Coalesced clusters 17 21 13 10 1
Mature clusters 5 3 2 1 0
Pioneer clusters 17 29 13 10 1
Herbaceous 2 11 3 3 0

! During simulations, the probability of selecting the WET transition was set to mimic different rainfall regimes.

2 Initial condition was the 1983 state vector.

Many control methods exist. This study com-
pared 2 possible control strategies in terms of
long-term, accumulated cash flow from cagtle
grazing on prickly acacia-infested grasslands.

Method. Plant dynamics were monitored in
permanent transects at 3 different sites in north
Queensland (2 at Hughenden and 1 at Charters
Towers). At each site, individual plants were
allocated to one of 4 height classes: <0.5m,
0.5-1.5m, 1.5-4.0m and >4.0m at the first sam-
pling time. The proportion of individuals
remaining in their class, moving to another class
or dying was calculated for the 3-year sampling
period. These data sets were pooled to give a

matrix of transition probabilities between height
classes (Table 4).

A simulation model incorporating a Markov
model of change in plant number and size and
including recruitment and . mortality data was
used to evaluate 3 management scenarios: (1) no
control practices; (2) control of plants greater
than 4m every 12 years; and (3) control of plants
greater than 0.5m every 12 years.

Changes in plant numbers (plants/ha) were
simulated over 23 time steps (one step equals
3 years), starting with an original population of
40 plants/ha in each of the 4 size classes. Where
chemical control was simulated, a modified
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Table 4. State transition matrices over a 3-year period for prickly acacia height classes for: (a) no control; (b) control all plants; and

(c) large plants only controiled (after Mooy et al. 1992).

Height class (m)

<0.5 0.5-1.5 1.5-4.0 >4.0
(a) <0.5 0.256 0.013 0.000 0
0.5-1.5 0.147! 0.492 0.104 0
1.54.0 0.021 0.234 0.709 0.100
>4.0 0.000 0.000 0.036 0.825
Dead 0.576 0.261 0.151 0.075
(b) <05 0.256 0.0 0.0 0.0
0.5-1.5 0.147 0.0 0.0 0.0
1.5-4.0 0.021 0.0 0.0 0.0
>4.0 0.000 0.0 0.0 0.0
Dead 0.576 1.0 1.0 1.0
©) <0.5 0.256 0.013 0.000 0.0
0.5-1.5 0.147 0.492 0.104 0.0
1.5-40 0.021 0.234 0.709 0.0
>4.0 0.000 0.000 0.036 0.0
Dead 0.576 0.261 0.151 1.0

! Percentage of plants <0.5m tall that will move into 0.5-1.5m class over the 3-year time step.

matrix was used which simulated the effects of
killing plants (Table 4). This was done by making
all transitions for the particular size class under
consideration zero, except for the transition to
dead plants, which had a probability of 1.

At each time step, prickly acacia basal area
(m%ha) was calculated from the simulated plant
number and the mean basal area for each height
class. Pasture production was estimated from the
equation of Carter et al. (1991):

Production = —350 + 2100x¢(-023*Basal area) Eq 4

where production was in kg/ha/yr and tree basal
area in m%ha. :

A safe stocking rate for cattle was estimated
by assuming that consumption of 40% annual
pasture production was sustainable and that this
would produce 120 kg/hd/yr of liveweight gain,
valued at $1.20/kg. Thus, a value of production
per hectare could be calculated based on methods
in Scanlan and McKeon (1990).

Some simple assumptions were also made:
climatic conditions experienced during the exper-
imental period continued for the simulated
period; chemical treatment had no impact on
seedling recruitment; and chemical control was
100% effective on the targeted size class. The
usual assumptions of Markov models were
accepted as valid for this situation.

Treatments were compared by accumulating
the annual gross profit (value of beef production

minus chemical costs). The return ($/ha) for the
control (no treatment) was subtracted from both
chemical treatments to give a net benefit of chem-
ical control.

Results and Discussion. The net benefit of the
management scenarios is shown in Figure 2. In
the short to mid-term (first 25 years), chemical
conirol of all plants taller than 0.5m resulted in
lower accumulated cash than applying no treat-
ment for the situation simulated (160 plants/ha).
The removal of large plants alone gave increased
benefits over the same period. The reason for this
is that removal of large plants alone gave large
increases in pasture growth. Control of smaller
plants as well gave only a small additional
increase in pasture growth whereas costs were
increased markedly. However, both chemical
control treatments were superior {0 no treatment
by the end of the simulation (70 years), and the
total-control treatment gave a 40% higher net
benefit than controlling large plants only. Thus,
the choice of appropriate control method depends
on the chosen time frame. Further details can be
found in Mooy et al. (1992).

Conclusion. This study shows how the transi-
tion matrix can be modified to represent some
form of management. It also shows how a
Markov model (of woody plant’ growth) can be
integrated into a larger model to evaluate the eco-
nomic impact of alternative management options.
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Figure 2. The accumulated cash benefit of controlling all or only large prickly acacia (Acacia nilotica) every 12 years,
over and above the returns from no chemical treatment (after Mooy er al. 1992).

Case 3 — Pasture composition changes in tropical
woodlands

Introduction. The tropical savanna woodlands of
northern Australia have a variable pasture com-
position, containing a large number of perennial
and annual grasses. Grazing pressures have
varied greatly over the last 25 years, due to use of
Brahman-infused cattle, supplementary feeding,
the beef slump of the mid-1970s and the droughts
of the 1980s. As a result, significant changes in
pasture composition have been observed (Gar-
dener et al. 1990). The naturalisation of the intro-
duced, stoloniferous grass Bothriochloa pertusa
is of particular importance. McIvor and Scanlan
(1994) present a state and transition model of this
system.

Method. A model of the pasture system in
tropical woodlands is presented in Figure 3 (sim-
plified from Mclvor and Scanlan 1994). This
shows the states (S;) within the system and also
the mean transition rates (k;). States 1-4 represent
perennial grass-dominated pasture, mixed peren-
nial and annual grass pasture, annual grass-domi-
nated pasture and naturalised, stoloniferous grass
pasture, respectively.

This system is modelled as a continuous-time
Markov process. The effect of different grazing
pressures on the landscape composition of the
4 states was analysed by altering the transition
rates.

To estimate the steady-state probabilities for
cach state, a set of equations has to be solved.
These equations are derived from Figure 3 by
equating the inflows with outflows as would
occur under a steady-state system. In this model,
the flows represent change of state rather than
matter actually moving between compartments.

0=S1.ks—Sp.ky—S4.ks

0= S2.(k7 +ky+ k4) -—S3.k2—Sl.k6
0= 83.ky—So.k7~Sy.k3

0= S4.(k3 + k5) —Sz.k4

1 =S1+Sz+S3+S4

Through solving these simultaneous equations,
the following equation was derived:

Eqgs 5

Eq6
k,.k k. k
475 354
o (Uarky th R theg -
L K, Uptkg

After solving this for S,, the proportions in
other states can be calculated from the above set
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of equations, for any combination of rates that is
chosen.

Transition rates appropriate to a range of
stocking pressures from very heavy to very light
were estimated (Table 5). As grazing pressure
increases, ki, ky and ks become less frequent and
ks, ku, k¢ and k7 become more frequent. Transi-
tion rates that may apply for a range of grazing
pressures were estimated (Table 5). For each
combination of k values, Equation 6 and then
Equations 5 were solved to obtain the steady-state
composition. Though the vegetation states and
the rates of transition were selected examples
only, they are adequate for illustrative purposes.

Results. As the level of grazing pressure
decreased from very high to very low, the propor-
tion of area covered by perennial grasses
increased from 5% to 72% while the proportion
dominated by annual grasses decreased from 68%
to 4% (Figure 4). The proportions of the other 2

states varied over a much narrower range with
both having maximum proportions under normal
grazing conditions (Table 5).

Discussion. This simple representation of pas-
ture communities in tropical woodlands is in
accord with general observations. Evaluating the
composition of states given certain rates of transi-
tion is a simple process, not requiring a computer.
Also, estimating the parameters as frequency of
occurrence is more intuitive than estimating pro-
portions of a state that may undergo a transition
in a time interval, as is the case for discrete-time
models.

Major disadvantages of this model are that
rates of transition may be difficult to quantify
experimentally and rates may not be constant
over time.

These deficiencies could be overcome through
the use of other simulation modelling approaches.
The following points are relevant:

Figure 3. System diagram for continuous-time Markov model of tropical savanna woodlands in north Queensland.
State 1 = perennial native grass; State 2 = unstable perennial and annual grass; State 3 = annual grass; State 4 = natural-
ised perennial grass. The k values are transition rates for changing from one state to another.
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Figure 4. The proportion of a tropical woodland pasture dominated by perennial grasses and annual grasses at a range of
stocking pressures. (See Figure 3 and Table 5 for description of the model and the parameters.)

Table 5. Transition rates (number of transitions per decade) for the continuous-time Markov mode! shown in Figure 3, together
with the predicted stable composition (% of area) of community types for each set of transition rates.

Transition Very heavy Heavy Normal Light Very light
rate grazing grazing grazing grazing grazing
ki 1 1.5 2 25 3
k2 1 1.5 2 2.5 3
k3 2.5 1.75 1 0.75 0.5
k4 1.5 125 1 0.75 0.5
k5 0.5 1 LS 20 2.5
k6 5 3.75 2.5 1.75 1
k7 25 1.75 1 0.75 0.5

State 1 5 14 33 51 72
State 2 18 27 32 30 21
State 3 68 46 22 11 4
State 4 9 13 13 8 3

(1) The first requirement is that the conditions
under which transitions will occur are definable.
A major effort is being placed on this area of
research in collaborative projects among Depart-
ment of Primary Industries/CSIRO/Department of
Lands under the North Australia Program (NAP2)
of the Meat Research Corporation.

(2) The continuous change of parameter values
can be addressed conceptually by dividing the
time period into shorter and shorter intervals,

within which it can be assumed that the param-
eter values are constant. Thus, the continuously
varying system can be approximated as a series of
steps during which time the parameter values
remain constant.

The sensitivity of the final composition of
states to changes in any transition rate is easily
determined, and this may indicate those areas
which require the most detailed study. In a simple
47compa11ment model as illustrated here, the
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effect of changes to one transition rate is easy (o
visualise. When the number of compartments
increases and the number of transitions altered
increases, the results of changes become impos-
sible to estimate without evaluating the analytical
solutions (as in Equation 6).

The combination of empirical models of pas-
ture composition in grazing systems with process
models to determine rates of transition appears to
offer great potential for evaluating research
results, for projecting impacts of changes to man-
agement and for developing research strategies. A
concerted effort will be made to do such a model-
ling project for the tropical woodlands of
northern Australia.

From studies like those mentioned above, we
can use process models of grazing systems (e.g.
GRASP — McKeon et al. 1990) to run long-term
simulation experiments to determine the fre-
quency of conditions that lead to transitions. This
would enable the parameters in Table 5 to be
determined on a sound basis.

Conclusion. This case demonstraies the anal-
ysis of a continuous-time Markov model. For this
model, the analytical solution is simple. One dis-
advantage not shown is that there is no capacity
to determine how long it will take for the system
to become stable in terms of the proportions in
the 4 states.

A major appeal of this type of model is that
the values of k can be determined by running pro-
cess models to determine the frequency of condi-
tions required to bring about each of the
transitions. This contrasts with the previous
example where the Markov model was used to
predict woody plant change within a larger
model. Here the detailed process model could be
used to determine parameters of the continuous-
time Markov model.

General conclusion

Discrete-time and continuous-time Markov
models can be used in ecological studies to
~describe state and transition models as described
by Westoby et al. (1989). Discrete-time models
can be used to project changes in composition of
vegetation states although the assumptions of the
Markov process are rarely met. In the analysis of
Prosopis spread into south Texas grasslands, the:
failure of assumptions was overcome by using
matrices which represent transitions for different

weather conditions. The same approach was used
to simulate management changes in a mitchell
grassland containing Acacia nilotica, with one
matrix for non-control periods and others for
periods in which control of A. nilotica was
performed.

Continuous-time models have been used to a
much smaller extent for ecological studies than
have discrete-time models. The main advantage
of this approach is that most biological processes
are continuous by nature rather than occurring in
particular time steps. The example of pasture
change in tropical woodlands shows the sim-
plicity of this modelling approach. Another
advantage is that rates are easier to conceptualise
by non-technical people than are the proportions
that may experience a transition during a fixed
time period.

The mathematics of Markov models are con-
ceptually simple. Analytical solutions are avail-
able for models in which Markov process
assumptions are valid. Simulation solutions can
be obtained for those cases where the assump-
tions are not appropriate. The approaches pre-
sented here should be considered in any project
which involves the use of state and transition
models.
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