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Abstract

Giant leucaena is a multipurpose tree-legume found throughout the tropics and sub-tropics. Its foliage is used as 
animal fodder due to high protein and fiber. Giant leucaena has several other advantageous traits such as fast-growth, 
high yields and strong tolerance to environmental stresses. Despite having these desirable qualities, leucaena tissues 
contain an undesirable attribute, a toxic non-protein amino acid, mimosine, found in all parts of the plant including the 
foliage. The goal of this research was to determine mimosine concentrations in various tissues and life stages of giant 
leucaena plants to inform use of leucaena foliage as a fodder. Mimosine was extracted from different parts of giant 
leucaena at different ages and quantified using HPLC analysis. qRT-PCR was used to determine the relative expression 
of mimosine synthase in leucaena tissues. Mimosine was present in all parts of the leaf, stem and root of giant leucaena, 
and concentrations changed depending on the age of the plant. Green seeds had the highest expression level of mimosine 
synthase. Mimosine is ubiquitous and abundant in leucaena tissues with younger and immature plants and tissues 
containing more mimosine than older mature plants and tissues.
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Resumen

La leucaena gigante es una leguminosa multipropósito que se encuentra en los trópicos y subtrópicos. Su follaje se 
utiliza como forraje para animales debido a su alto contenido de proteínas y fibra. La leucaena gigante presenta otras 
características ventajosas, como un rápido crecimiento, altos rendimientos y una fuerte tolerancia a las tensiones 
ambientales. A pesar de tener estas cualidades deseables, los tejidos de la leucaena contienen un atributo indeseable, 
un aminoácido no proteico tóxico llamado mimosina, presente en todas las partes de la planta, incluido el follaje. El 
objetivo de esta investigación fue determinar las concentraciones de mimosina en diferentes tejidos y etapas de vida 
de las plantas de leucaena gigante para el uso informado del follaje de leucaena como forraje. La mimosina se extrajo 
de diferentes partes de la leucaena gigante en diferentes edades y se cuantificó mediante análisis de HPLC. Se utilizó 
qRT-PCR para determinar la expresión relativa de la mimosina sintasa en los tejidos de leucaena. La mimosina estaba 
presente en todas las partes de la hoja, tallo y raíz de la leucaena gigante, y las concentraciones variaban según la edad 
de la planta. Las semilla verdes tuvieron el nivel más alto de mimosina sintasa. La mimosina está presente en forma 
abundante en todos los tejidos de leucaena, pero los mayores contenidos de mimosina se presentan en las plantas y 
tejidos más jóvenes que en las plantas y tejidos más maduros.
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Introduction

The tree-legume giant leucaena (Leucaena leucocephala 
(Lam.) de Wit subsp. glabrata (Rose) Zárate) is a widely 
used animal fodder in the tropics and sub-tropics due to 
its fast growth, high forage yield and favorable nutritional 
characteristics, including high amounts of protein and 
fiber (Shelton and Brewbaker 1994; Brewbaker 2016). 
Although it grows normally as a medium-sized tree, 
it can be maintained as a bushy shrub by repeatedly 
harvesting its foliage several times a year (Honda et 
al. 2022). When grown for fodder under favorable 
conditions, giant leucaena can produce as much as 80–
99 t green forage/ha/yr, which is equivalent to 24–30 t 
dry matter (DM)/ha/yr (Shelton and Brewbaker 1994).

Giant leucaena is considered to be an ideal fodder 
legume for the tropics because (i) it is able to grow in 
dry areas, marginal lands, and places with eroded slopes 
on fertile soils; (ii) it has a deep root system and is 
tolerant to drought and can be grown as a rain-fed fodder 
with little or no irrigation; (iii) as a perennial fodder, 
it does not require repeated planting each season and 
can be maintained with relatively minimal efforts and 
resources; (iv) it is a nitrogen-fixing tree legume that 
fixes high amounts of N (196-268 kg N/ha) in nodule-
forming symbiosis with Rhizobium (Sanginga et al. 
1989) (v) it is naturally resistant to infection by microbial 
pathogens and insect pests (Bageel et al. 2020); and (vi) 
it has tolerance to environmental stresses such as acidic 
and alkaline soils, drought, salinity, eroded slopes, and 
UV light (Bageel et al. 2020; Honda et al. 2018; Ishihara 
et al. 2018; Rodrigues Correa et al. 2019). However, 
despite these beneficial attributes, giant leucaena 
contains large amounts of an undesirable compound, 
mimosine, a non-protein aromatic amino acid found in 
all parts of the plant (Honda and Borthakur 2021). Its 
concentration in the foliage can be 2–5% of the plant 
dry weight (DW) (Soedarjo and Borthakur 1996). Some 
studies have shown that its concentrations can be as high 
as 12-20% DW in the growing shoot tips (Honda and 
Borthakur 2019). The toxicity of mimosine stems from 
its ability to bind metallic cations like iron, copper and 
zinc, and pyridoxal 5’-phosphate (PLP). Iron, copper, 
zinc and PLP are important enzyme cofactors in folate, 
nucleic acid, chlorophyll and amino acid synthesis and 
metabolism (Negi et al. 2014). Some enzymes inhibited 
by mimosine include tyrosinase, tyrosine decarboxylase, 

DOPA decarboxylase, RNA reductase, cystathionine 
synthase, cystathionase, and Asp-Glu transaminase 
(Negi et al. 2013; 2014). The side-effects of consuming 
large amounts of mimosine include fetal defects, 
infertility, goiter, thyroid problems and hair loss (Crounse 
et al.1962; Hamilton et al. 1968; Dewreede and Wayman 
1970). Two enzymes that degrade mimosine effectively 
are mimosinase, which is found in leucaena foliage, and 
rhizomimosinase, which is produced in Rhizobium strains 
that form nitrogen-fixing root nodules on leucaena. Both 
enzymes are C-N lyases that degrade mimosine into 
pyruvate, ammonia and 3-hydroxy-4-pyridone (3H4P) 
(Negi et al. 2013; 2014). Exposure to the degradation 
product 3H4P, its tautomer 3,4-dihydroxypyridine, and 
its isomer 2,3-dihydroxypyridine (2,3DHP) can also 
cause toxic side-effects, which include goiter, dermal, 
kidney and liver problems (Hegarty et al. 1979; Jones 
1979; Jones and Hegarty 1984). Despite the presence of 
mimosine, giant leucaena fodder is considered a good 
protein supplement to low quality forages and has been 
shown to improve animal performance, fermentation 
and digestibility efficiency, and dietary intake (Orden et 
al. 2000; Khy et al. 2012). However, because of the toxic 
effects of mimosine, giant leucaena fodder is generally 
fed to animals as a protein supplement along with grass 
or hay at 20–30% of total diet (Jones and Hegarty 1984). 
Cattle and goats can tolerate leucaena foliage containing 
up to 0.18 g of mimosine/kg body weight without 
showing any harmful side effects (Bageel and Borthakur 
2022). Similarly, sheep can tolerate leucaena foliage 
equivalent to 0.14 g of mimosine/kg body weight (Sethi 
and Kulkarni 1995). Recently, studies have reported that 
animal diets comprised of 100% leucaena did not cause 
long-term toxicity problems (Dahlanuddin et al. 2019; 
Ruiz et al. 2019).

Leucaena invests a large amount of energy and 
resources into mimosine synthesis. Negi et al. (2014) 
predicted that leucaena plants would have grown 20% 
larger if the same amount of energy and resources were 
diverted to plant growth and development. Mimosine is 
abundant and ubiquitous in giant leucaena and because 
of the importance of giant leucaena as an animal fodder, 
it is important to study the fluctuations of mimosine 
within giant leucaena based on age and tissue type. 
The goal of the present study was to determine how 
mimosine concentrations of giant leucaena change in 
different stages of growth and tissue types.
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Materials and Methods

Germination and growth of giant leucaena seedlings

Mature seeds of giant leucaena cultivar ‘K636’ (K636) 
were collected from the University of Hawaii Waimanalo 
Research Station, Waimanalo, Hawaii. Seeds were 
scarified with concentrated sulfuric acid at room 
temperature for 25 min. After scarification, seeds were 
rinsed with sterile deionized water 5 times and placed in 
either petri dishes containing filter paper and water or 
50.8 cm x 25.4 cm plastic trays containing a vermiculite-
soil mixture. The seeds placed in vermiculite-soil 
were allowed to germinate and then grown in a plant 
growth chamber at 25 °C ± 2 °C with a 16/8 h light/
dark photoperiod and an irradiance of 100 µmol/s/m, 
and an average humidity between 60–65%. Plants 
were watered twice a week throughout the experiment 
until harvesting. Seeds germinated in petri dishes were 
incubated in the dark at 28 °C and filter paper and water 
were replaced daily until harvesting. Plants used in this 
study were grown in pots in a growth chamber and 
organized in a completely randomized block design with 
4 to 6 replications. The actual mimosine concentration 
of plants grown in a growth chamber are expected to 
be different from plants grown in the field. However, 
fluctuations in the mimosine concentration based on life 
stage are expected to be similar.

Mimosine extraction and quantification

Mimosine was extracted from different parts of giant 
leucaena by submerging 1 g of plant material in 30 mL 
of 0.1 N HCl and shaking overnight at room temperature. 
After incubation, acid extracts were centrifuged for 
15 min at 16,000 x g to pellet and remove plant debris. 
The mimosine concentration of the leaf acid extracts 
were assayed by HPLC using a Waters 2695 separations 
module (Waters, Millford MA, USA) a Phenomenex C18 
column (Phenomenex, Torrance, CA, USA) (5μ; 4.6 × 250 
mm), and a UV detection photodiode array. An isocratic 
carrier solvent of 0.02 M o-phosphoric acid at a linear 
flow rate of 1 mL/min was used to analyze mimosine in 
acid extracts. For quantitative determination of mimosine, 
commercial mimosine (Sigma-Aldrich, St. Louis, MO, 
USA) was prepared in various concentrations and then 
quantified by HPLC following the methods described 
above. The areas under the curves for mimosine peaks 
were used to plot a standard curve, which was then used 
to quantify mimosine in acid extracts. Remaining plant 

material was rinsed and dried overnight at 65 °C and then 
weighed. The mimosine concentration was expressed as 
% of plant DW. Mimosine concentrations determined on 
the basis of plant DW were normalized to factor in the loss 
of dry matter during mimosine extraction with 0.1 N HCl.

Mimosine concentration of germinating giant leucaena 
seeds and mimosine secretion by germinating seeds

Seed coats were removed from mature seeds (< 6 h after 
scarification) and fresh green seeds (< 6 h after removal 
from trees) and mimosine extracted and quantified 
from seed coats and cotyledons separately following 
the methods described above. In another experiment, 
mimosine was extracted and determined as a percentage 
of the plant DW from giant leucaena mature seeds 0, 2, 
4, 6, 8, and 10 d after initial scarification. At 0 d after 
scarification (< 6 h), mature seeds had minor swelling. 
At 2 d after scarification, seeds were fully swollen and 
considerably larger. At 4 d after scarification, the initial 
radicle tip could be observed from seeds. At 6 and 8 d 
after scarification, seeds had long and very long radicles, 
respectively. At 10 d after scarification, shoots could be 
observed growing from seeds. During these stages of 
germination, the seed growth medium was collected 
every 24 h. The amount of mimosine secreted was 
calculated as a percentage of mature seed DW following 
the methods described above. Each sample set contained 
at least 4 replications.

Mimosine concentration of giant leucaena during 
growth stages of seedlings 

Mimosine was extracted and determined as a percentage 
of plant DW from giant leucaena seedlings at 1, 2, 3, 4, 6, 
8, 12, 16, 20, 24, and 28 weeks after germination. Each 
sample set contained at least 6 replicates.

Mimosine concentration in leaves, stem, root, and 
embryonic leaves of giant leucaena seedlings

Giant leucaena seedlings were grown and then harvested 
at 2, 4, 8, and 12 weeks of age. A whole seedling 
was divided into 4 major parts as leaf, stem, root and 
embryonic leaf. These main parts of the leucaena 
seedling were separated, grouped by part, and then 
mimosine extracted and quantified as a percentage 
of DW of each part. The percentage that each main 
part (leaf, stem, root and embryonic leaf) contributed 
to the whole plant mimosine concentration was also 



 Tropical Grasslands-Forrajes Tropicales (ISSN: 2346-3775)

14 M. Honda and D. Borthakur

determined. Each experimental set contained at least 4 
replicates with the plant parts collected from at least 3 
seedlings per replicate.

Mimosine concentration in subparts of leaf, stem, root, 
green seed and mature seed

The leaves, stem, roots, green seeds and mature seeds 
(main parts) of giant leucaena were divided into their 
subparts. Leaves were divided to leaflets, rachis and 
petiole; stems were divided to mature stem and green 
stem (excluding embryonic leaves); roots were divided 
to primary and secondary roots; and green and mature 
seeds were divided to seed coat and cotyledons. The main 
parts were removed from 12-week-old plants and then 
further separated and grouped by respective subparts. 
Mimosine was extracted from these subparts and then 
determined as a percentage DW of each subpart. The 
percentage that each subpart contributed to the main 
parts were also determined. Each experimental set 
contained at least 4 replicates.

Expression of mimosine synthase in giant leucaena 

To determine the expression levels of mimosine synthase 
(Ur-Rashid et al. 2018) in giant leucaena, mature seeds 
(no seed coat), green seeds (no seed coat), shoot tips and 
green seed pods (no seeds) were harvested from mature 
giant leucaena cultivar K636 trees from the University 
of Hawaii Waimanalo Research Station, Waimanalo, 
Hawaii. RNA was extracted from these parts using 
a modified CTAB method using Takara Fruit-mateTM 
(Takara Bio, Kusatsu, Shiga, Japan) in the extraction/
lysis buffer to help increase RNA yields. After RNA 
extraction, RNA quality and quantity were determined 
using a Nanodrop spectrophotometer (Thermo Fisher, 
Waltham, MA, USA) and through gel electrophoresis. 
DNA was removed from all samples using the Turbo 
DNase kit (Thermo Fisher, Waltham, MA, USA) 
following manufacturers guidelines. cDNA was 
synthesized from 2 μg of total RNA using the TetroTM 
cDNA synthesis kit (Meridian Bioscience, Cincinnati, 
OH, USA) following manufacturers guidelines. After 
cDNA synthesis, samples were diluted using nuclease 
free water. A qRT-PCR master mix was prepared in 10 
μL reactions containing 5 μL of SensifastTM SYBR® Hi-
ROX kit (Meridian Bioscience, Cincinnati, OH, USA) 
aster mix, 0.25 μM forward primer, 0.25 μM reverse 
primer, 1 μL of MgCl2, 1 μL of single strand cDNA, 
and nuclease free water to bring the final volume to 10 

μL. All qRT-PCR reactions were run on a StepOneTM 
Real-time PCR system (Applied Biosystems, Foster 
City, CA, USA) with reaction conditions set at 50 
°C for 2 min, 95 °C for 2 min, 40 cycles of 95 °C for 
15 s, 58 °C for 15 s, and 72 °C for 30 s, followed by 
melting curve analysis. Three biological replicates and 
4 technical replicates were used for each tissue-type. 
The relative quantification for mimosine synthase gene 
expression in green and mature seeds and in shoot tips 
and green seed pods were determined from the cycle 
threshold (Ct) values, which were generated from each 
qRT-PCR reaction normalized against the Ct values 
of the internal reference gene, elongation factor-1α 
(ef1α). ef1α was identified as the most suitable internal 
control among 5 previously tested candidate reference 
genes (ubiquitin-5, β-actin, ef1α, 5.8S rRNA, and 18S 
rRNA). The relative fold change in gene expression 
was determined using the 2^(-delta delta CT) (2−ΔΔCt) 
method.

Statistical analyses

For HPLC analyses of mimosine concentration in giant 
leucaena, a student’s t-test, or simple analyses of variance 
(ANOVA) followed by Tukey post-hoc, Tukey-Kramer, 
or Dunnett’s test were used as appropriate for data 
distribution characteristics. Statistical significance was 
determined with significant differences for P<0.05. qRT-
PCR data were analyzed using a student’s t-test (P<0.05).

Results

Mimosine in germinating and non-germinated seeds 

Following scarification, the washed mature seeds of giant 
leucaena contained 3.6% mimosine at the start (day 0) 
of germination (Figure 1). The mimosine concentration 
of germinating seeds was reduced to 2.4% after 2 d of 
incubation. Germinating seeds released 0.66 ± 0.042% 
DW mimosine/d to the surroundings during the first 3 
d of germination. The mimosine concentration of the 
germinating seeds increased from day 4 and continued 
to day 10 following scarification, when the mimosine 
concentration reached 19.8%. Apparently, mimosine is 
being synthesized in the germinating seeds, resulting 
in a 450% increase in the mimosine concentration. In 
ungerminated mature seeds, mimosine concentration 
was reduced to 1.33 ± 0.21% DW on day 10 due to 
leaching. Thus, following scarification, 63% seed 
mimosine is leached out within 10 d.
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Figure 1. Mimosine concentration of giant leucaena mature 
seeds at 0, 2, 4, 6, 8, and 10 d after initial scarification. Error 
bars indicate standard error of 4 replications. Bars sharing a 
letter do not differ by Tukey-Kramer test (P≤ 0.05).

Mimosine concentration of giant leucaena during the 
first 7 months of growth

Mimosine concentration of seedlings changed 
significantly during early stages of growth and then 
stabilized after week 8 (Figure 2). At week 1, the mimosine 
concentration of the seedlings was 8.3% DW and at 
weeks 2 and 3, the mimosine concentration increased 
to 15.2% and 14.8% DW, respectively. Thereafter, 
mimosine concentrations decreased significantly to 9.4% 
and 4.4% DW at the 4th and 6th week, respectively. At 
the 8th week, total mimosine concentration of seedlings 
reduced further to 3.1% DW and thereafter, did not 
significantly change all the way through week 28. These 
results indicate that at a very early seedling stage giant 
leucaena produces high amounts of mimosine, which 
declines to ~3% DW after 8 weeks.

Mimosine concentration of leaf, stem, root and 
embryonic leaves of giant leucaena seedlings

Mimosine concentrations in plant parts were high during 
very early growth stages, but then decreased as the plants 
became older (Figure 3a). From all stages of growth tested, 
2-week-old seedlings contained the highest mimosine 
concentrations in the leaves, stem, root and embryonic 
leaves. Embryonic leaves fell off between 6-10 weeks of 
seedling age. The amounts of mimosine present in leaves, 
stem and roots were also expressed as proportions of the 
whole plant mimosine. As the seedlings grew older, the 
proportions of leaf mimosine increased compared to the 
proportions of stem or root mimosine (Figure 3b). These 
results indicate that although whole plant mimosine 
concentration as percentage DW decreased with age, the 
proportion of mimosine in the leaves relative to the entire 
plant increased.
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Figure 2. Mimosine concentration of giant leucaena seedlings 
at growth stages until 28 weeks. Error bars indicate standard 
error of 4 replications. Bars sharing a letter do not differ by 
Tukey-Kramer test (P≤0.05).

6.0%

3.5%

4.8%
4.0%

2.5%

0.56%

2.2% 1.6%

0.43% 0.15%

2.3%

1.3% 0.56%
0.22%

0

1

2

3

4

5

6

2 4 8 12

%
 D

ry
 w

ei
gh

t m
im

os
in

e

Seedling age (weeks)

Mimosine content
Embryonic leaf
Leaf
Stem
Root

72.2% 74.4%

84.7%
90.0%

17.1% 16.5%
10.0%

6.8%
10.7% 9.1% 5.3% 3.2%0

10

20

30

40

50

60

70

80

90

2 4 8 12

M
im

os
in

e 
di

st
rib

ut
io

n 
(%

) 

Seedling age (weeks)

Mimosine distribution

Leaf
Stem
Root

a) b)

Figure 3. (a) Mimosine concentration in the leaves, stem, roots, and embryonic leaves of giant leucaena seedlings at 2, 4, 8, and 12 
weeks of age; (b) Proportion of mimosine in the leaf, stem and root of giant leucaena, relative to the whole plant at 2, 4, 8, and 12 
weeks of age. Embryonic leaves were excluded from the proportion. Error bars indicate standard error of 4 replications.
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Mimosine distribution in different parts of the leaf

The mimosine concentration of whole leaves, including 
the leaflets, rachis and petiole of 8-week-old giant 
leucaena seedlings was 3.7% DW (Figure 4a). The 
mimosine concentration of leaflets was 4.1% DW, 
which was significantly higher than in the rachis and 
petiole which contained 2.5%, and 1.6% DW mimosine, 
respectively (Figure 4b). Among all parts of leucaena 
leaf, leaflets contained the highest proportion of 
mimosine at 79.1%, followed by the petiole and rachis at 
10.7% and 10.2%, respectively (Figure 4c).
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Figure 4. (a) Leaflets, rachis, and petiole of giant leucaena; 
(b) Mimosine concentration of leaflets, rachis, petioles, and 
whole leaves of giant leucaena seedlings; (c) Allocation of 
mimosine (% of the total mimosine of the entire leaf) within 
the parts of the leaf. Error bars indicate standard error of 4 
replications. Bars sharing a letter do not differ by Tukey test 
(P≤0.05).

Mimosine distribution in different parts of the stem 

Mimosine concentration of the entire stem of giant 
leucaena, including mature and green stem was 0.15% 
DW. Mimosine concentration of green and mature 
stems were 0.17% and 0.13% DW, respectively (Figure 
5a). Mature stem and green stem contained 54.7% and 
45.3% of the total stem mimosine, respectively (Figure 
5b). These results indicate that although green stem 
has a higher mimosine concentration, the mature stem 
contains a higher proportion of the entire stem mimosine 
concentration.
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Figure 5. (a) Parts of the stem from giant leucaena; (b) 
Mimosine concentration of the green, mature, and whole stem 
of giant leucaena seedlings; (c) Allocation of mimosine (% 
of the total mimosine of the entire stem) within parts of the 
stem. Error bars indicate standard error of 4 replications. Bars 
sharing a letter do not differ by Tukey test (P≤0.05).
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Mimosine distribution in different parts of the root 

The mimosine concentration of the giant leucaena whole 
root system, including the primary and secondary roots 
was 0.25% DW (Figure 6a). The mimosine concentration 
of the primary root was 0.16% DW and the mimosine 
concentration of the secondary roots was 0.59% DW. 
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Figure 6. (a) Root parts of giant leucaena; (b) Mimosine concentration of primary, secondary and whole root system of giant 
leucaena seedlings; (c) Allocation of mimosine (% of the total mimosine of the entire root system) within the parts of the root. Error 
bars indicate standard error of 4 replications. Bars sharing a letter do not differ by Tukey test (P≤0.05).

Although the primary root had a much lower mimosine 
concentration, it still comprised 45.9% of the entire root 
system’s mimosine concentration. Secondary roots of 
leucaena seedlings had a higher mimosine concentration 
than the primary root as percentage of dry weight, 
comprising 54.1% of the entire root mimosine (Figure 
6b).

Mimosine distribution in different parts of mature and 
green seeds

The mimosine concentration of whole green seeds and 
mature seeds were 3.8% and 3.2% DW, respectively 
(Figure 7a). The mimosine concentration of green and 

mature seed coats were 0.5% and 1.5%, respectively. 
The mimosine concentrations of the green and mature 
seed cotyledons were 21.7% and 8.9% DW, respectively. 
Cotyledons of both green and mature seeds contained 
the highest proportion of the entire seeds mimosine 
concentration (Figure 7b).
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Figure 8. Mean fold change of mimosine synthase in green 
seeds, shoot tips and green seed pods. Mean fold change is 
calculated comparing the green seeds, shoot tips and green 
seed pods to mature seeds 0 days after initial scarification, 
which served as the control. Error bars indicate standard error 
of 3 replications.

Expression of mimosine synthase in green seeds, shoot 
tips and green seed pods

Giant leucaena green and mature seeds, green seed pods 
and fresh shoot tips, contain the highest amounts of 
mimosine. qRT-PCR analysis was used to test if there 
is a correlation between mimosine concentration and 
expression of mimosine synthase within these tissue 
types. Mature seeds following scarification served 
as the control. Green seeds had the highest relative 
increase in expression of mimosine synthase (5.1-fold), 
when compared to mature seeds (Figure 8). Shoot tips, 
which normally contain the highest concentrations 
of mimosine, were found to have 3 to 4-fold higher 
expression of mimosine synthase, when compared to 
mature seeds. Green seed pods and mature seeds appear 
to express mimosine synthase at similar levels. These 
results indicate that mimosine synthase expression does 
not have a large effect on the mimosine concentrations 
within leucaena tissues.
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Discussion

Mimosine is found in all parts of leucaena, including 
green buds, flowers, green seeds, mature seed pods, 
stem, root and root nodules (Soedarjo and Borthakur 
1996; Rodrigues et al. 2019). Honda and Borthakur 
(2019; 2021) found that the mimosine concentration 
of giant leucaena foliage fluctuated depending on the 
environmental growth conditions and stresses that 
plants are exposed to. Mimosine in the different parts of 
leucaena shoots can vary from 1 to 12% with growing 
tips containing the highest amounts, while the old stems 
contain the lowest amounts (Jones 1979). In a previous 
study, young leucaena leaves were found to contain 
~4.5% mimosine on a dry weight basis, which decreased 
to ~2% in 10-week-old leaves (Tangendjaja et al. 1986). 
Generally, green seeds, shoot tips and green seed pods 
contain the highest concentrations of mimosine (Soedarjo 
and Borthakur 1996). The results of the present study 
using methods developed by Da Silva Rodrigues-Honda 
et al. (2022) for accurate extraction and quantification 
of mimosine from leucaena tissues show that these 
tissues also had relatively high expression of mimosine 
synthase when compared to expression in mature seeds, 
which contain high concentrations of mimosine. In 
the present study, young leucaena seedlings contained 
relatively high amounts of mimosine, which decreased 
significantly from 15.2 % DW at week 2 to 2.0% DW 
at week 28. Similarly, younger parts and tissues of 
leucaena contained more mimosine than older or more 
mature parts. Germinating mature seeds also contained 
relatively high amounts of mimosine, which fluctuated 
depending on the germination stage. Cotyledons of 
germinating seeds synthesized mimosine and released it 
to the surrounding area. Mimosine synthase expression 
was also found to fluctuate, depending on the germination 
stage. The reason mimosine is high in germinating seeds 
and young seedlings could be because younger plants 
are susceptible to pest and pathogen attack and the high 
mimosine concentration in young and soft tissues could 
deter pests and microbial pathogens. Mimosine, its 
degradation product, 3H4P, and the degradation product 
isomer 2,3DHP are known to have antimicrobial, 
nematicidal and insecticidal properties (Anitha et al. 
2005; Nguyen et al. 2015). Mimosine has also been 
researched for its herbicidal properties and has been 
shown to inhibit germination of rice seeds (Prasad and 
Subhashini 1994).

In the present study, mimosine was found in all major 
parts and subparts of the leaf, stem root, green seed 

and mature seed. Among the parts and subparts tested, 
leaves and cotyledons (embryonic leaves) contained 
the highest amount of mimosine. Leucaena stems and 
roots contained much less mimosine than leaves and 
seeds. Although the presence of mimosine is generally 
considered undesirable in leucaena foliage for use as 
fodder, its presence is helpful for the leucaena plant 
for survival under some biotic and abiotic stresses. 
The high mimosine concentration in the leaf and seed 
may serve to deter pests, herbivores and airborne and 
soil pathogens. Leaves are also exposed to higher levels 
of UV light and heat, which could induce osmotic and 
oxidative stress within leaf tissues (Rodrigues Correa et 
al. 2019). Cotyledons in the soil are exposed to different 
pathogens as well as varying degrees of osmotic stress. 
The mimosine present in the roots could be a means of 
releasing and widely dispersing it in the rhizosphere. 
Root secreted mimosine can serve as a phytosiderophore 
by binding and solubilizing important soil nutrients like 
iron, copper and zinc, making it easier for the plant to 
absorb from the soil, especially young seedlings that are 
not yet established. Secreted mimosine may also be a 
means to inhibit growth of soil pathogens and potential 
plant competitors. When seedlings are young, the high 
amount of mimosine present in seed cotyledons, which 
later become the embryonic leaves, could serve to supply 
the rest of the plant with mimosine. Mimosine has also 
been shown to be an osmolyte and antioxidant that helps 
plants counter secondary stresses that confers tolerance 
to grow successfully under osmotic and oxidative stress 
(Honda and Borthakur 2021). Osmotic stress is a type 
of secondary stress induced by a primary stress such 
as drought or pest and pathogen attack (Honda and 
Borthakur 2021).

The authors acknowledge that the gene expression 
portion of this study was conducted using material 
collected from field conditions in the state of Hawaii, 
USA, while the rest of this study was carried out under 
controlled growth conditions. The actual mimosine 
concentration results are expected to be different from 
studies conducted in other environments and regions of 
the world. However, this study showed that mimosine 
concentrations vary within giant leucaena based on age 
and tissue type, which can be translated to other growth 
environments. 

In order to improve fodder quality of giant leucaena, 
plant breeders have tried to develop varieties with 
reduced mimosine (Brewbaker 2016). However, there 
are no mimosine-free Leucaena species available in 
nature, although there is some variation in mimosine 



 Tropical Grasslands-Forrajes Tropicales (ISSN: 2346-3775)

20 M. Honda and D. Borthakur

ruminant bacterium Synergistis jonesii. However, if 
mimosine or its metabolite 2,3DHP are not present in 
the animal diet from leucaena foliage, the bacterial 
strain is lost within 6–9 months (Glatzle et al. 2019). 
Other mimosine-degrading bacterial strains have 
also been identified. Halliday et al. (2018) found that 
inoculation did not fully protect Bos indicus steers from 
2,3DHP toxicity and postulated that inoculation may 
not be necessary. Recently, it was found that mimsoine-
derived toxins can be naturally removed by animals 
and excreted in their urine as a mimosine-glucoronic 
acid conjugate (Shelton et al. 2019). Another way to 
combat mimosine toxicity would be to remove it post-
harvest. Sundried leucaena leaves contain significantly 
less mimosine than untreated leaves (Agbo et al. 2017; 
Wee and Wang 1987). Soedarjo and Borthakur (1996) 
found that soaking leucaena leaves, pods and seeds in 
water removed up to 97% of mimosine without reducing 
protein amounts. Similarly, prolonged soaking of leaves 
in warm water (30 °C) for 48 h caused most of the 
mimosine to be degraded (Wee and Wang 1987). In a 
study conducted by Honda and Borthakur (2022), it was 
found that soaking leucaena leaves in an acid solution 
removed >90% of mimosine; however, it was also found 
that this method significantly reduced the gross energy 
of the foliage. In this same study, the authors developed a 
simple post-harvest processing method that significantly 
reduced not only mimosine, but also indigestible fibers 
and proanthocyanidins. Besides reducing these nutrient-
limiting compounds, maceration also led to a significant 
increase in carbohydrates, which was thought to be in 
part due to the degradation of mimosine, fibers and 
proanthocyanidins. Ensiling was also found to lower 
mimosine of leucaena foliage; however, this decrease 
was due to degradation by endogenous enzyme release 
and not by fermentation (Lyon 1985).

Although mimosine in leucaena fodder can cause 
toxicity symptoms, some reports have stated that feeding 
animals a diet comprised mostly of leucaena (≥60%) was 
efficient and animals showed good performance (Giang 
et al. 2016; Halliday et al. 2018; Ruiz et al. 2019; Shelton 
et al. 2019). However, many studies indicate that a diet 
high in leucaena leads to unwanted side effects and a 
decline in animal productivity (Megarrity and Jones 1983; 
Santiago et al. 1988; Ram et al. 1994; Gupta and Atreja 
1999). When utilizing leucaena fodder for food or as a 
protein supplement, it is important to note that the foliage, 
especially the active growing parts, contains a significant 
amount of mimosine. This can lead to unwanted side-
effects that negatively affect health and animal production.

concentration among diploid and tetraploid leucaena 
species. Inter-species crosses among diploid and 
tetraploid species did not result in progenies with 
reduced mimosine (Brewbaker 2016). Jube and 
Borthakur (2010) developed a transgenic line of giant 
leucaena K636 by expressing the pydA gene encoding 
a meta-cleavage dioxygenase isolated from Rhizobium 
that forms nitrogen-fixing root nodules on leucaena. 
Dioxygenase encoded by pydA degrades 3H4P, which 
is an intermediate in both synthesis and degradation 
of mimosine. It was expected that expression of this 
enzyme in leucaena would reduce mimosine synthesis 
by degrading 3H4P, which is a precursor for mimosine 
biosynthesis. The mimosine concentration of the pydA-
expressing transgenic plants was reduced by 22.5% in 
comparison to K636.

Giant leucaena is an allotetraploid species with 
104 chromosomes and a basic chromosome number of 
x=26. Therefore, it is likely that the genes for mimosine 
biosynthesis are present in 4 copies. In mimosine-free 
mutants of giant leucaena, all 4 copies of a mimosine 
biosynthesis gene must be mutated. This may be the reason 
why spontaneous mimosine-free mutants are not found 
in nature. It should be possible to construct mimosine-
free mutants of giant leucaena in the future using 
CRISPR, a recently developed genome editing method, 
in which all copies of a gene are mutated simultaneously. 
For the mimosine biosynthesis pathway, so far, only the 
final step in which mimosine synthase catalyzes reaction 
between O-acetylserine and 3H4P to produce mimosine 
is known (Yafuso et al. 2014); the biochemical steps 
and the enzymes or genes involved in the synthesis of 
the 3H4P have not yet been discovered. It is however 
known that the amino acid lysine is the precursor for 
biosynthesis of the pyridone ring (3H4P) of mimosine 
(Negi et al. 2021). Identification and characterization 
of the enzymes/genes for 3H4P biosynthesis will open 
the way for developing mimosine-free giant leucaena. It 
remains to be seen if such mimosine-free leucaena grows 
larger but fails to grow in alkaline soils where metallic 
cations such as iron and zinc are not easily available or 
the plant becomes susceptible to some biotic and abiotic 
stresses.

Giant leucaena is grown in Southeast Asia, Australia, 
and South America for its highly nutritious foliage that is 
widely used as animal fodder. The presence of mimosine 
in giant leucaena foliage limits its acceptability and 
usage as an animal fodder. Although toxic, mimosine, 
its degradation product 3H4P, and the 3H4P isomers 
can be combated in animals by inoculation with the 
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Conclusion

Mimosine is present in all parts of leucaena, and its 
concentrations vary with the age of the plant. Mimosine 
concentration is relatively high in the seeds, young leaves 
and shoot tips. The results of this study can be used to 
predict mimosine concentrations of giant leucaena plant 
parts as plants age and determine safe amounts for 
incorporating in livestock diets.
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