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Abstract

The conversion of forests to agricultural land can dramatically alter soil properties, but soil resistance, which is the 
ability of soil properties or processes to remain unchanged in the face of a specific disturbance or stress, remains 
unclear. We evaluated the impact of land use change and agricultural management on changes on an andosol in the 
Cauca department, Colombia, through the analysis of physicochemical variables and biological indicators (dimensionless 
resistance index, where +1 is the highest resistance and -1 is the lowest resistance) that allowed the assessment of soil 
resistance. The land uses analyzed included (1st) forest, which was approximately 100 years of age, plus areas of the same 
forest (70% of the area), which had been replaced by (2nd) natural pastures and (3rd) forage crops in the year 1985, i.e. 30 
years before the observations. All physicochemical variables except soil clay content were significantly affected by the 
change from forest to natural pasture. Similarly, the change from forest to forage cropping affected all physicochemical 
variables as well as resulting in a decrease in soil microbial biomass but an increase in microbial activity. We found that 
the metabolic quotient (-0.32) had the lowest resistance, followed by the microbial coefficient (0.19), microbial biomass 
(0.32) and microbial activity (0.39), suggesting that soil stress caused by disturbance has a marked impact on the number 
and activity of the soil microflora. By contrast the change from forest to natural pastures was not associated with any 
effect on microbial biomass and its activity, suggesting that the continuous input of organic matter to the soil through 
the supply of organic residues from diversified root systems and nutrients from livestock urine and manure favored 
the preservation and resistance of microbial processes in the soil. These findings suggest that deforestation to establish 
natural pasture has less impact on soil stability and health than cultivating the soil following clearing.
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Resumen

La conversión de bosques en tierras agrícolas puede alterar drásticamente las propiedades del suelo, pero la resistencia 
del suelo, que es la capacidad de las propiedades o procesos del suelo para permanecer sin cambios frente a una 
perturbación o estrés específico, sigue sin estar clara. Evaluamos el impacto del cambio de uso de suelo y manejo 
agronómico sobre cambios en un andosol en el departamento del Cauca, Colombia, mediante el análisis de variables 
fisicoquímicas e indicadores biológicos (índice de resistencia adimensional, donde +1 es la resistencia más alta y -1 
es la resistencia más baja) que permitió evaluar la resistencia del suelo. Los usos de la tierra analizados incluyeron 
(1ro) bosque, de aproximadamente 100 años de antigüedad, mas áreas del mismo bosque (70% del área), que había 
sido reemplazado por (2do) pasturas naturales y (3ro) cultivos forrajeros 30 años antes de las observaciones. Todas las 
variables fisicoquímicas, excepto el contenido de arcilla del suelo, se vieron significativamente afectadas por el cambio 
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de bosque a pasto natural. De manera similar, el cambio de bosque a cultivos forrajeros afectó todas las variables 
fisicoquímicas y resultó en una disminución de la biomasa microbiana, pero un aumento en la actividad microbiana. 
Encontramos que el cociente metabólico (-0.32) tuvo la resistencia más baja, seguido por el coeficiente microbiano 
(0.19), la biomasa microbiana (0.32) y la actividad microbiana (0.39), lo que sugiere que el estrés del suelo causado por 
la perturbación tiene un marcado impacto en el número y actividad de la microflora del suelo. Por el contrario, el cambio 
de bosques a pastos naturales no se asoció con ningún efecto sobre la biomasa microbiana y su actividad, lo que sugiere 
que el aporte continuo de materia orgánica al suelo a través del suministro de residuos orgánicos de sistemas de raíces 
diversificados y nutrientes de la orina y el estiércol del ganado favoreció la conservación y resistencia de los procesos 
microbianos en el suelo. Estos hallazgos sugieren que la deforestación para establecer pastos naturales tiene menos 
impacto en la estabilidad y salud del suelo que cultivar el suelo después del desmonte.

Palabras clave: Biomasa microbiana, cultivo, índice de resistencia, manejo del suelo, pastos, remoción de bosques.

Introduction

Approximately 38% of the Earth's ice-free land area is 
currently used for grazing and cultivation (Foley et al. 
2011). More than 80% of agricultural expansion since the 
1980s has been at the expense of tropical forests (Gibbs 
et al. 2010). These land use changes are associated with 
the expansion or contraction of the area of land used for 
different purposes, e.g. pasture and cropland, and the 
change in the type of management on existing land cover 
(Davis et al. 2019). Land use change is associated with 
progressive and continuous management, which may 
increase erosion and reduce soil quality, and can lead to a 
30–50% loss of organic carbon (Reicosky et al. 1997), plus 
decrease in soil microbial biomass and activity (Ordoñez et 
al. 2015). The responses of soil functions or soil quality to 
land use change can be evaluated through 2 components of 
ecological stability: resistance (the ability of a soil property 
or process to remain unchanged in the face of a specific 
disturbance); and soil resilience (the ability of a soil property 
or process to recover after a specific disturbance) (Allison 
and Martiny 2008; De Vries and Shade 2013). Accordingly, 
agricultural sustainability and soil ecology introduced 
the terms ‘soil resilience’ and ‘soil resistance’ to describe 
the ability of soils to preserve their quality and maintain 
productivity (Seybold et al. 1999; Orwin and Wardle 2004). 
In this way, it is important to understand how to determine 
the impact of land use change on the factors that grant soil 
resistance in order to avoid soil degradation.

Microbial biomass and soil microbial activity, 
metabolic and microbial coefficients, are indicators of 
soil resistance because they allow early identification of 
the effects of disturbance on soil properties or functions 
(Chaer et al. 2009; Griffiths and Philippot 2013; Bloor et 
al. 2018). Additionally, land use change could modify the 
physicochemical properties of soil such as pH, moisture, 
bulk density, texture and availability of carbon and 
nitrogen in the long term (Kirschbaum 2000).

Andean soils occupy 1% of the world’s land surface 
(Dahlgren et al. 2004). They occur in the Andes mountain 
range, which occupies the western part of South America 
bordering its entire Pacific Ocean coast from western 
Venezuela through Colombia, Ecuador, Peru and Bolivia. 
Andosols are volcanic soils and have the capacity to store 
several-fold greater amounts of organic carbon than other 
soils (Panichini et al. 2012). Some unique properties of 
andosols include variable charge, high water retention, high 
phosphate retention, low bulk density, high friability, highly 
stable soil aggregates and excellent tilth (Shoji et al. 1993). 
Andosols play a vital role in Colombia’s natural landscape, 
helping to provide essential nutrients and regulate the water 
cycle. Nonetheless, Colombian Andean ecosystems are 
being transformed with the introduction of agricultural 
activities, such as intensified use of agrochemicals and 
certain types of tillage, among other factors, all aimed at 
increasing agricultural productivity (Mujuru et al. 2013). 
Traditionally, current studies on andosols have focused 
primarily on the responses of physical properties (Fujino et 
al. 2008; Dörner et al. 2012; Vásquez et al. 2012; Ivelic-Sáez 
et al. 2015); however, impacts on the biological functions of 
the soil have received less attention.

The maintenance of soil functions in ecosystems, that 
have been extremely poorly managed, is crucial, as in the 
case of the Colombian Andean soils. We hypothesized 
that conversion of forests to natural pastures or cropping 
would alter the physicochemical characters of Andean 
soils leading to possible deterioration of soils. The 
objective of this study was to evaluate the impacts of 
land use change from forest to natural pastures and 
forage crops on characteristics of andosols based on the 
analysis of physicochemical properties and biological 
indicators that grant resistance to soils. This information 
is crucial for adaptive management, to correct or improve 
soils and their contribution to the ecosystem services of 
carbon storage and nutrient cycling in these ecosystems 
that are so widely distributed in the Colombian Andes.
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Materials and Methods

Study area

The study area is located in the basin of the Las 
Piedras River, Cauca department, Colombia, between 
2°25'42"‒2°27'40" N and 76°23'53"–76°26'14" W 
(Figure 1) with an average elevation of 2,495 masl. Its 
physiographic features are representative of the South 
American tropical Andes. The terrain is mountainous, 
with slopes of 16 to 50%. The soils, andosols derived 
from volcanic ash, have a medium clay-loam texture that 
is loosely structured and well drained, acidic (pH 4.6–
5.0) with high aluminum saturation and low calcium, 
magnesium and phosphorus concentrations (Martínez 
Burgos 2009). The annual average temperature ranges 
between 10.4 and 18.4 °C (CRC 2006), while the region 
has orographic precipitation (Poveda 2004; Guzmán 
et al. 2014), with an average monthly rainfall of 136 
mm. The 3 land uses studied correspond to the Andean 
forest formations (Cuatrecasas 1958) and according to 
the Holdridge classification (Holdridge 1967), these 
formations belong to the lower montane wet forest.

Forage crop Natural forest

Natural pasture

1,787‒2,000
2,001‒2.250
2,251‒2,500
2,501‒2,750
2,751‒3,000

3,001‒3,250
3,251‒3.500
3,501‒3,750
3,751‒4,000
4,001‒4,250
4,251‒4,500
4,501‒4,750

Drainage system

Natural pasture
Forage crop
Natural forest
Micro-basin

Sampling sites
Digital elevation model
m.a.s.l.

Figure 1. Study area in the basin of the Las Piedras River, 
Cauca department, Colombia.

In the area, approximately 50% of the land supports 
livestock (pasture), 35% is protected areas (forest) and 
15% is used for forage cropping (Ordoñez et al. 2020). 
All plots occur on a similar landform unit, are derived 
from similar parent material and experience similar 
climatic conditions. Hence, we assumed that soils used 
had similar soil properties prior to land use change. The 
site under study had been under forest for about 100 
years. In 1985, 70% of the area had been cleared and 

replaced by natural pastures and forage crops (Figure 2).
The history of land use and management practices was 
identified through interviews with the local population. 
The forest is characterized by Quercus humboldtii Bonpl., 
Guarea kunthiana A. Juss, Myrcianthes sp., Nectandra 
reticulata Mez, Chrysochlamys sp. and Croton sp. Land 
use change was based primarily on the establishment of 
the following systems: natural pasture (Holcus lanatus 
L., a perennial naturalized species), managed by rotating 
livestock, with each field being grazed for one month 
and then allowed to rest for 2 months in order to recover. 
It is considered that this grazing system is not intensive 
as stocking rates are not high and adequate recovery 
times are allowed. The only input to the system is cattle 
urine and manure.

The forage grown is Elephant grass [Cenchrus 
purpureus (Schumach.) Morrone (syn. Pennisetum 
purpureum Schumach.)], a perennial crop with a duration 
of 5 productive years. Once cultivation begins, the crop is 
ready for harvesting after 4 months and repeat harvests are 
carried out every 2–4 months. The ground is tilled with 
draft animals prior to row-planting the grass, and weeds 
are controlled in a similar way. Following harvesting, 
work is carried out to eliminate weeds from the field and 
compost is added, about every 4 months.

Figure 2. Description of the changes in land use over time in 
the Las Piedras River basin, Cauca, Colombia. Natural forest 
(1915–2015); land use change from forest to pasture and 
forage crop was in 1985.

Experimental and sampling design

Soil resistance was evaluated in terms of 11 soil 
properties: 4 physical parameters (bulk density, clay, 
silt and sand); 3 chemical parameters (C, pH and N); 
and 4 biological indicators (microbial biomass, soil 
microbial activity, metabolic quotient and microbial 
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coefficient). It was considered a randomized unifactorial 
design, where a factor corresponds to a type of land use 
management with 3 levels (forest, natural pasture and 
forage cropping). Each land use was divided into plots. 
In natural pastures, cattle were rotated, while forage 
was harvested from cropped areas. Each land use type 
had 2 replicates situated 20 m apart. The replicates were 
established in different plots for each land use. In each 
replicate (200 m2), 8 subplots (25 m2) were established. 
We collected 8 soil samples (0–0.20 m) each month. 
Samples were randomly taken from the established 
subplots for 11 months (n = 88), making it possible to 
obtain an independent sample each month, thus creating 
a temporal replicate (Casler 2015). All soil samples were 
immediately transported to the laboratory and stored 
in polyethylene bags at 4 °C before analysis. Biological 
analysis was carried out on the same day as the sample 
collection.

Laboratory analysis

The soil texture was measured by the Bouyoucos 
method, using the American Society for Testing and 
Materials (ASTM) HYDR Fisher Brand D2487-06. Bulk 
density was determined by the cylinder method (Soil 
Survey Staff 2004) and soil pH (H2O) potentiometrically 
by method 9045D (EPA 2004). Soil organic carbon was 
measured by oxidation with chromic acid (Walkley and 
Black method) (Schumacher 2002) and soil nitrogen by 
the Kjeldahl method (Gomez-Taylor 2001).

Soil microbial biomass was estimated by fumigation 
- extraction: samples were fumigated with ethanol-free 
chloroform, whereas Control samples were left unsprayed; 
after 3 days, the microbial carbon was extracted (Vance 
et al. 1987). To determine soil microbial activity, the 
CO2 output was measured by the respirometry method 
(C-CO2): the soil sample was incubated for 5 days in a 
closed system, then 1 N sodium hydroxide was added 
and precipitated with barium chloride, followed by the 
addition of 2 drops of phenolphthalein. Finally, the soil 
sample was titrated with 0.5 N hydrochloric acid to 
quantify the amount of hydroxide that had not reacted 
with CO2; a Control or blank sample was always included. 
Based on the biological and carbon measurements, the 
following microbial indices were calculated: metabolic 
quotient qCO2 = basal respiration (μg C-CO2/g soil)/
microbial biomass (μg C-mic/g soil); and microbial 
coefficient qM = microbial biomass (μg C-mic/g soil)/C 
content (mg C/g soil).

The indicators qCO2 and qM can be used for bio-
indication of adverse processes in soils. Both indicators 
evaluate the efficiency of soil microbial populations in 
utilizing organic C compounds. The qCO2 has been 
proposed as an indicator of stress in soils, because there 
is a reduction in microbial efficiency in energy use in 
disturbed ecosystems (Anderson and Domsch 1993). 
qCO2 decreases in stable systems and increases with the 
incorporation of easily degraded waste (Dinesh et al. 
2003). qM may be related to organic matter formation 
and efficiency of conversion of recalcitrant C pools 
into microbial biomass (Sparling 1992). Generally, if 
a soil is intensively disturbed, microbial biomass will 
decline faster than organic matter and qM will decrease 
(Sparling 1992).

Statistical analysis

The impact of the change in land use on soil resistance 
was evaluated based on the change in its physicochemical 
properties by applying the comparison of means by a 
Student’s t-test (Ayala-Orozco et al. 2018). A property 
was considered sensitive when the 95% confidence 
interval for the difference between the means included 
zero. The results were complemented with the calculation 
of the size of Cohen's d effect, which allows us to know 
if the effects of the differences between treatments are 
significant. Statistical power depends on the sample 
size of the study, the magnitude of the effect and the 
significance criterion (typically α = 0.05). Magnitude of 
the effect allows researchers to present the magnitude 
of the reported effects in a standardized metric, which 
can be understood regardless of the scale that was used 
to measure the dependent variable. A commonly used 
interpretation is to refer to magnitude of effects as small 
(d = 0.2), medium (d = 0.5) and large (d = 0.8) based on 
benchmarks suggested by Cohen (1988). The resistance 
of the biological properties of the soil was analyzed 
through the resistance index (RS) (Equation 1) proposed 
by Orwin and Wardle (2004) (+1 maximum resistance, 
-1 minimum resistance), evaluating the change in 
resistance of the microbial indicators caused by land use 
change from forest to natural pasture or forage crops:

RS = 1 −
(C0 + | D0 | )

2 | D0 |
(Equation 1)  

where:
D0 = the difference between the Control C0 and the 
disturbed soil P0 at the end of the disturbance. This index 
is standardized by the Control soil, that of the forest.
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Results

Resistance of the soil to land use change

There was no change in soil clay content from forest to 
natural pasture, but the other variables were significantly 
different between these types of land use (P<0.05) (Tables 
1 and 2). Sand percentage, soil C and N concentrations 
and soil pH increased under natural pastures (P<0.05); 
in contrast, bulk density and silt percentage decreased 
(P<0.05). Similar behavior was found in the conversion 
from forest to forage cropping with sand percentage, soil 
C and N concentrations and soil pH increasing and silt 
percentage decreasing (P<0.05); in contrast, bulk density 
did not change (P>0.05) (Table 2). Calculation of the 

magnitude of the effects confirmed that the significant 
differences found in the physicochemical variables 
of the conversion from forest to natural pasture were 
derived from the land use change factor (d>0.8) (Table 
2). Similarly, those differences found in the variables 
during the conversion from forest to forage cropping 
were explained by the change in land use.

In the change from forest to natural pasture, microbial 
coefficient (qM) had the lowest resistance (0.37), while 
soil microbial biomass (0.98), metabolic quotient (qCO2) 
(0.63) and microbial activity (0.61) were more resistant 
to land use change. In the change from forest to forage 
crop, metabolic quotient (-0.32) had the lowest resistance, 
followed by qM (0.19), microbial biomass (0.32) and 
microbial activity (0.39) (Figure 3).

Table 1. Mean and standard deviation of the mean of physicochemical and biological properties of soil under 3 land uses in the 
0–20 cm soil horizon.
Soil characteristic Natural forest Natural pasture Forage crop

Mean SD Mean SD Mean SD
Bulk density (g/cm3) 0.71 0.07 0.66 0.04 0.70 0.04
Sand (%) 51.3 2.76 56.9 1.36 64.8 2.11
Clay (%) 10.3 0.26 10.4 0.38 10.8 1.16
Silt (%) 38.4 2.69 32.7 1.21 24.4 2.50
Soil organic carbon (%) 5.20 0.86 9.65 1.05 7.63 0.87
pH (H2O) 4.68 0.20 5.38 0.20 5.21 0.28
Nitrogen (%) 0.59 0.10 0.99 0.12 0.77 0.15
Microbial activity (μg C-CO2/g/d) 120.8 23.00 149.9 28.08 173.4 36.49
Microbial biomass carbon (μg C/g) 206.4 83.29 208.7 54.33 100.4 79.70
qCO2 0.75 0.78 2.50
qM 3.74  2.19  1.02  

Table 2. Soil resistance measured as the difference between the mean values for the natural forest, natural pasture and forage crop 
in the 0–20 cm soil horizon. Asterisks mark significant differences at P≤0.05. Negative values in mean difference indicate that 
the parameters in changing from natural forest to natural pasture and forage cropping have been increasing and positive values 
indicate that the values have been decreasing.
Land use change Soil parameter t Significance (2-tailed) Mean difference Cohen’s d1

Natural forest to 
natural pasture

Bulk density (g/cm3) 5.79 0.00* 0.06 1.36
Sand (%) -15.53 0.00* -5.63 2.59
Clay (%) -0.78 0.44 -0.04 0.13
Silt (%) 16.33 0.00* 5.67 2.72
Soil organic carbon (%) -27.75 0.00* -4.45 5.58
pH (H2O) -21.14 0.00* -0.70 4.00
Nitrogen (%) -21.49 0.00* -0.40 1.78

Natural forest to 
forage crop

Bulk density (g/cm3) 1.21 0.23 0.01 0.2
Sand (%) -33.02 0.00* -13.51 5.5
Clay (%) -3.28 0.00* -0.46 0.5
Silt (%) 32.31 0.00* 13.97 5.3
Soil organic carbon (%) -16.80 0.00* -2.43 2.79
pH (H2O) -12.98 0.00* -0.53 2.16

1The size of Cohen's d effect (Cohen 1988). The significance criterion is α = 0.05. The magnitudes of effects are taken as small (d = 
0.2), medium (d = 0.5) and large (d = 0.8).
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Figure 3. Comparison of soil resistance indicators according 
to land use change (+1 more resistance, -1 less resistance). 
MB (microbial biomass), MA (microbial activity), qCO2 
(metabolic quotient) and qM (microbial coefficient).

Discussion

While land use change from forest to natural pasture or 
forage crop changed many of the soil's physical, chemical 
and biological properties, the changes had no negative 
impact on bulk density. This is in contrast with other 
studies where tillage contributed to increasing bulk 
density under intensive cropping because of the potential 
destruction of soil aggregates due to physical mixing/
abrasion by tillage operations (Anda and Dahlgren 
2020). The same effect has also been documented 
in soils with overgrazing (Hofstede 1995). Soil bulk 
density values did not exceed 0.94 g/cm3 in both pasture 
and tilled soils, which is considered a critical threshold 
for establishing crops on Andean soils, due to low bulk 
density being characteristic of Andean horizons (<0.9 g/
cm3), associated with the development of porous soils 
(IUSS Working Group WRB 2015). Values recorded in 
our study remain within the characteristic ranges for 
andosols, possibly because the practices conducted in 
forage cultivation and natural pasture were not intensive. 
However, sand percentage increased in both soils, and 
silt decreased by approx. 7%, with more pronounced 
changes in levels under forage cropping. Additionally, the 
proportion of clay in soils did not change with conversion 
from forest to natural pasture, but increased significantly 
with forage cropping. These results may imply the loss 
of soil components due to deflation, in which particles 
with the size of silt, when susceptible, are more easily 
suspended in the wind than sand particles, while clay 
particles, which have a high electrostatic charge and 
affinity with water, make it less susceptible to loss due 
to deflation (Li et al. 2009; Bettis III 2012; FAO 2019). 
The decrease in vegetation cover, as a consequence of 

grazing and clearing of land, and the possible alteration 
of the soil structure appear to have resulted in a 
preferential loss of silt particles, effectively increasing 
concentration of sand particles. These findings coincide 
with those of Neff et al. (2005), Ordoñez et al. (2015) and 
Zhang et al. (2019). Additionally, the increase in the clay 
fraction is associated with increased soil organic carbon 
(SOC) stabilization (Sollins et al. 1996). Organic matter 
is a major factor affecting aggregate stability because 
its abundance and characteristics can be modified by 
agricultural practices, like tillage methods, residue 
management and amendments. For example, the addition 
of organic matter such as manure to forage crops has 
been reported as a beneficial practice to maintain the 
stability of soil aggregates in the long term because of 
humified compounds (Abiven et al. 2009). At our study 
site, despite the fact that significant changes in physical 
properties were evidenced following changes from forest 
to natural pastures and forage crops, the magnitudes of 
these properties (bulk density, texture) remained within 
the characteristic ranges for andosols, possibly because 
the practices developed in the area are not intensive and 
because the ability to store carbon in andosols favors the 
structure and stability of aggregates, making the soil 
resistant to physical damage from agricultural practices 
(Watts and Dexter 1998).

Soil pH and C and N concentrations were sensitive to 
land use changes, increasing in both natural pasture and 
forage cropped soils. Management practices imposed 
lowered the acidity of the soils under forage cropping 
through the supply of calcium compounds in the form of 
carbonates and oxides, the most common management 
practice for the correction of acidity and the elimination 
of toxicity in soils of volcanic origin (Dahlgren et al. 
1991; Tonneijck et al. 2010). The neutralization in the 
soil pH of natural pastures may be due to the continuous 
supply of organic carbon by livestock, which gradually 
generates greater condensed molecules (humic 
substances) that produce strong aluminum retention 
(Tonneijck et al. 2010); organic amendments to soils can 
generally increase soil resistance (Griffiths and Philippot 
2013). On the other hand, in our study, soil C and soil N 
increased with the land use change from forest to natural 
pastures and forage cropping, due to the supply of fresh 
manure to pastures and manure amendments to forage 
crops that increased carbon storage in this soil, avoiding 
an annual net loss; similar results were reported in 
andosols in Chile at 20 cm depth (Dörner et al. 2011). 
In the case of pastures, a large component of detritus 
is incorporated directly into the mineral soil horizons 
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decrease or absence of mulch and the quantity and quality 
of organic material input to soils as well as the possible 
effects of ploughing every 5 years and weeding activities 
every 4 months. In this sense, less organic material input to 
soils promotes metabolic activity with greater energy costs 
for its maintenance and greater competition for nutrients 
(Kızılkaya et al. 2010; Royer-Tardif et al. 2010; Guillaume 
et al. 2016). To process added mature organic matter 
(compost) microorganisms consume a greater amount of 
energy (high microbial activity). Our results showed that 
conversion of forest to forage cropping reduced the soil 
resistance indicators related to the microbial community 
and its carbon assimilation process, as indicated by the 
decrease in the soil microbial coefficient and soil microbial 
biomass, results that have also been evident in other crops  
(Tilston et al. 2010).

The microbial coefficient (qM) was less resistant in the 
change from forest to forage cropping than in the change 
from forest to natural pasture; this change is associated 
with the effect of tillage and the type of agricultural 
inputs that affect the structure of the microbial 
community (Wakelin et al. 2009). When the microbial 
biomass is under stress with regular disturbance, this 
results in a reduced qM, which indicates a decrease in 
the efficiency of the heterotrophic microorganisms to 
convert organic carbon into microbial biomass. This 
ratio was found to be higher under an agroforestry 
system than under an organic and conventional system 
established on andosols (Paolini Gomez 2018). On the 
other hand, according to the results of Lopes et al. 
(2010) in native forests and pastures, the greater qM 
value may be due to the higher C content of the soil 
microbial biomass, suggesting appropriate conditions 
for microbial growth, facilitated by the input of organic 
matter of good quality (Sousa et al. 2015). Hence there 
was greater soil resistance by the biological indicators 
(microbial biomass, microbial activity, qM and qCO2) in 
the change from forest to natural pasture because of the 
infrequent grazing periods, which allow enough time 
for the microbial community in the soil to re-establish 
after the intervention, thus recovering the activity 
and the diversity of microorganisms, reducing land 
degradation and achieving sustainable soil management 
(Griffiths et al. 2016). Additionally, in this soil, there 
is a higher concentration of organic carbon, because 
of the continuous supply of organic residues from 
diversified root systems and nutrients from urine and 
manure. These inputs may increase the resistance of the 
grassland soil microbial community, and therefore soil 
functions (Ng et al. 2015).

(Shoji et al. 1990). These findings were consistent with 
those of Novara et al. (2019), who found a positive effect 
of manure application during organic farming on SOC 
concentration by 53% in the 17–18 cm soil horizon over 
21 years. Koga et al. (2017) reported that fertilizing of 
soils with composted cattle manure increased carbon 
stocks to a lesser extent than when manure application 
was mixed with inputs from crop residue, as has been 
done for years in the pastures in our study. This pattern 
was also observed in andosols under pastures compared 
with andosols under forest stands, where greater 
amounts of organic C are found (Kov et al. 2018). This 
phenomenon has been commonly attributed to fertilizer 
application and liming practices in grasslands, as well 
as to grass species that have denser rooting systems. 
Therefore, the positive relationship between the amount 
of total C contribution and the change in soil C reserves 
can be attributed to the differing management methods 
(Koga 2017). Given that agricultural sustainability is 
dependent on maintaining levels of or incorporating 
organic matter into soil (Weiner et al. 2010), any 
increases in soil C will almost certainly improve soil 
functioning and soil quality (Poulton et al. 2018). In 
relation to C, the conversion of forest to natural pastures 
and forage crops led to increased C storage, which could 
produce beneficial effects on soil biological activities 
and physical properties, such as water infiltration, 
aggregate stability, ease of tillage, soil fertility and 
regulation of nutrients (Jackson et al. 2017). Thus, 
improving soil management practices should allow 
maintenance and possible increase of soil C, avoiding 
further land degradation (Keesstra et al. 2016).

We found negative effects of change in land use in 
terms of biological indicators in the soil. In the conversion 
of forest to forage cropping, resistance of the soil microbial 
biomass, microbial activity and metabolic coefficient 
(qCO2) were reduced in comparison with conversion of 
forest to natural pasture. The lower qCO2 indicated the 
conversion to natural pasture promoted the formation of 
new microbial biomass and less C loss through respiration 
as compared with cropped soils; the higher input of C to 
the pasture system promotes an increase in soil microbial 
biomass, allowing greater efficiency in C utilization by the 
microorganisms (Kaschuk et al. 2011; Lopes et al. 2010). 
On the other hand, despite the fact that soil C increased 
with forage cultivation, it has been found that 30 years 
forage cultivation in andosols results in a decrease in the 
soil microbial biomass and affects its activity (Joergensen 
and Castillo 2001). The lower soil biological resistance 
with the change from forest to forage crop is related to the 
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Conclusions

The evaluation of the sensitivity of the selected 
physicochemical and biological properties of the soil 
allowed us to understand the impact of the management 
practices associated with the use of the soil on its 
resistance. Even though significant changes in physical 
properties were evidenced, these remain within the 
characteristic ranges of the andosols, possibly due to 
the fact that the practices employed in forage cultivation 
and natural pasture are not intensive. For example, in 
natural pastures there is a low density of animals per 
hectare, agricultural practices are carried out by direct 
sowing and the dead material remains on the soil surface. 
In forage cultivation, planting was performed 6 times 
before evaluation, using ploughing and application of 
organic fertilizers. It appears that pH and soil C and N 
concentrations in soil were sensitive to land use changes, 
actually increasing following the change from forest to 
natural pasture and forage cropping; however, there was 
a reduction in microbial biomass and an increase in qCO2 
after conversion from forest to forage cropping, suggesting 
that the biological functions are less resistant than the 
physicochemical properties of andosols. Therefore, 
we suggest that evaluation of resistance of andosols to 
management change be carried out through the integration 
of physicochemical and biological properties, considering 
the variability in the degree of sensitivity that their 
properties present when faced with different management 
intensities.

In future studies a greater spatial coverage of soil 
samplings should be undertaken to take into account 
topographic factors that may influence changes in soil 
characteristics.
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