Simulation of grazing cattle fattening systems in the humid tropics of Costa Rica depending on stocking rate, level of supplemental molasses and time of the year

Authors

DOI:

https://doi.org/10.17138/tgft(12)173-190

Abstract

Silvopastoral systems (SSP) are a sustainable alternative to produce beef in the tropics. In the present study, the average daily weight gain (ADG) per animal was 0.64 kg in pastures of Urochloa brizantha 'Toledo', associated with Arachis pintoi and U. decumbens as a monoculture. These pastures have persisted for over ten years, with stocking rates ranging from 1.9 to 3.2 AU/ha (UA=400 kg) in 10-month rotation cycles. The paddocks had live fences of Gliricidia sepium and scattered trees of Erythrina poeppigiana and Cordia alliodora. The Life-Sim model was used to simulate the response using 25 comparisons of ADG with a mean absolute error (MAE) of 0.056 kg. Supplementing molasses at 18.32% of the potential DM intake provided the energy required to improve the utilization of the excess protein contained in the forage consumed, resulting in higher ADG (0.85 kg), but its inclusion was nonprofitable. Another scenario evaluated was the effect of fluctuating prices on the purchase and sale of fattened cattle throughout the year. The maximum gross margin per animal was for February (US$ 621), the minimum for March (US$ 445), and the annual mean was US$ 544. No difference among the starting months for fattening was detected when the prices for the last ten years were used. Other parameters evaluated were N consumption (139.66±3.88 g/animal/day); N use efficiency (25.60±0.58%); urinary N excretion (49.74±0.63 g/animal/day), fecal N (54.12±1.50 g/animal/day); and CH4 emissions (80.48±4.76 kg/year).

Author Biographies

José Daniel Hernández, Centro Agronómico Tropical de Investigación y Enseñanza (CATIE)

El artículo se basa en la tesis de maestría en la Escuela de Posgrado del CATIE

Alberto Ramírez, Consultor Independiente, Productor en finca "Tres Equis"

Graduado de CATIE y Productor en cuya finca se condujo el trabajo bajo su co-supervisión

Danilo Pezo, Centro Agronómico Tropical de Investigación y Enseñanza (CATIE)

Researcher-Professor of CATIE´´'s Graduate School

Cristóbal Villanueva, Centro Agronómico Tropical de Investigación y Enseñanza (CATIE)

Researcher and Professor CATIE´'s Graduate School

Roberto Quiroz, CATIE Centro Agronómico Tropical de Investigación y Enseñanza

Roberto Quiroz is a Panamanian scientist trained in basic sciences but has vast experience in research, development, innovation, and capacity building in agriculture, climate change, and natural resources management. He obtained his undergraduate degree at the University of Panama and his Master of Science and Ph.D. degrees from North Carolina State University. His international experience includes working for the Panamanian Agricultural Research Institute (IDIAP) for 10 years, the International Development Research Center (IDRC) for 7 years, the International Potato Center (CIP) for 23 years, the radar group of the Jet Propulsion Laboratory (JPL- NASA) and currently the Tropical Agricultural Research and Higher Education Center (CATIE). He is the Education Director and Dean of the Graduate School at CATIE and an adjunct professor at the University of Missouri-Columbia. He is well known for his scientific publications and talks.

References

Adesogan AT; Havelaar AH; McKune SL; Eilittä M; Dahl GE. 2020. Animal source foods: Sustainability problem or malnutrition and sustainability solution? Perspective Matters. Global Food Security 25:100325. doi: 10.1016/j.gfs.2019.100325

Araiza E; Delgado E; Carrete FO; Medrano H; Solís A; Murillo M; Haubi Y. 2013. Degradabilidad ruminal in situ y digestibilidad in vitro de diferentes formulaciones de ensilados de maíz-manzana adicionados con melaza. Avances en Investigación Agropecuaria 17(2):79–96. bit.ly/4eLAWGG

Bacab-Pérez HM; Solorio-Sánchez FJ. 2011. Oferta y consumo de forraje y producción de leche en ganado de doble propósito manejado en sistemas silvopastoriles en Tepalcatepec, Michoacán. Tropical and Subtropical Agroecosystems 13(3):271–278. bit.ly/3TyVNF1

Beltrán IE; Calvache I; Cofre R; Salazar F; Keim JP; Morales A; Pulido RG; Alfaro M. 2022. Nitrogen intake and its partition on urine, dung and products of dairy and beef cattle in Chile. Agronomy 12(1):15. doi: 10.3390/agronomy12010015

Berndt A; Tomkins N. 2013. Measurement and mitigation of methane emissions from beef cattle in tropical grazing systems: a perspective from Australia and Brazil. Animal 7(2):363–372. doi: 10.1017/S1751731113000670

Blaxter KL, Clapperton JL. 1965. Prediction of the amount of methane produced by ruminants. British Journal of Nutrition 19(1):511–522. doi: 10.1079/BJN19650046

Candelaria-Martínez B; Ruiz-Rosado O; Gallardo-López F; Pérez-Hernández P; Martínez-Becerra Á; Vargas-Villamil L. 2011. Aplicación de modelos de simulación en el estudio y planificación de la agricultura, una revisión. Tropical and Subtropical Agroecosystems 14(3):999–1010. bit.ly/3zafZ9y

Carrera C; Muñoz H; Solares L. 1963. Melaza de caña como suplemento en el engorde de bovinos en zacate guinea (Panicum máximum). Revista Mexicana de Ciencias Pecuarias 1(1):34–38. bit.ly/4e7HeAB

Castellaro G; Klee G; Chavarría J. 2007. Un modelo de simulación de sistemas de engorda de bovinos a pastoreo. Agricultura Técnica 67(2):163–172. doi: 10.4067/s0365-28072007000200006

Corfoga (Corporación de Fomento Ganadero). 2022. Precio promedio de ventas de bovinos comercializados en las subastas ganaderas pertenecientes a la Federación de Subastas Ganaderas, 2007–2022. bit.ly/3XsD8vU

Cottle DJ; Eckard RJ. 2018. Global beef cattle methane emissions: yield prediction by cluster and meta-analyses. Animal Production Science 58(12):2167–2177. doi: 10.1071/AN17832

Cuadrado H; Torregroza L; Jiménez N. 2004. Comparación bajo pastoreo con bovinos machos de ceba de cuatro especies de gramíneas del género Brachiaria. Revista MVZ Córdoba 9(2):438–443. doi: 10.21897/rmvz.485

DeRamus HA; Clement TC; Giampola DD; Dickison PC. 2003. Methane emissions of beef cattle on forages: efficiency of grazing management systems. Journal of Environmental Quality 32(1):269–77. doi: 10.2134/jeq2003.2690

Díaz-Romeu R; Hunter A. 1978. Metodologías de muestreo de suelos, análisis químico de suelos y tejido vegetal y de investigaciones en invernadero. Centro Agronómico Tropical de Investigación y Enseñanza (CATIE), Turrialba, Costa Rica. handle/11554/3115

Eggleston HS; Buendia L; Miwa K; Ngara T; Tanabe K, eds. 2006. IPCC guidelines for national greenhouse gas inventories. Vol 4: Agriculture, forestry and other land use. Institute for Global Energy Strategies (IGES), Hayama, Japan. bit.ly/3zuU0dh

Figueroa Preciado G. 2003. Optimización de una superficie de respuesta utilizando JMP IN. Mosaicos Matemáticos 11:17–23. bit.ly/3zkMhP8

Fontoura Junior JAS da; Menezes LM; Corrêa MN; Dionello NJL. 2007. Utilização de modelos de simulação em sistemas de produção de bovinos de corte. Veterinária e Zootecnia 14(1):19–30. ISSN 0102-5716.

Fulkerson WJ; Neal JS; Clark CF; Horadagoda A; Nandra KS; Barchia I. 2007. Nutritive value of forage species grown in the warm temperate climate of Australia for dairy cows: Grasses and legumes. Livestock Science 107(2–3):253–264. doi: 10.1016/j.livsci.2006.09.029

Gill M; Garnsworthy PC; Wilkinson JM. 2021. Review: More effective linkages between science and policy are needed to minimize the negative environmental impacts of livestock production. Animal 15(1):100291. doi: 10.1016/j.animal.2021.100291

Grajales-Cedeño JK; Bethancourt-García JA; Corrales G; Sánchez-Galán EA; Vargas R; Quintero-Chanis ER; Gallardo J; Geider JC. 2021. Factores que intervienen en la variación del precio de comercialización de bovinos en subastas ganaderas de Panamá (2016–2020). Zootecnia Tropical 39:e5545844. doi: 10.5281/zenodo.5545844

Greenwood PL. 2021. Review: An overview of beef production from pasture and feedlot globally, as demand for beef and the need for sustainable practices increase. Animal 15(1):100295. doi: 10.1016/j.animal.2021.100295

Hawkes C; Harris J; Gillespie S. 2017. Chapter 4. Changing diets: Urbanization and the nutrition transition. En: 2017 Global Food Policy Report. International Food Policy Research Institute (IFPRI), Washington, DC, USA. p. 34–41. hdl.handle.net/10568/146456

Henchion M; Moloney AP; Hyland J; Zimmermann J; McCarthy S. 2021. Review: Trends for meat, milk and egg consumption for the next decades and the role played by livestock systems in the global production of proteins. Animal 15(1):100287. doi: 10.1016/j.animal.2021.100287

Henchion M; Zimmermann J. 2021. Animal food products: Policy, market and social issues and their influence on demand and supply of meat. Proceedings of the Nutrition Society 80(2):252–263. doi: 10.1017/S0029665120007971

Holmann F; Rivas L; Argel P; Pérez E. 2004. Impact from the adoption of Brachiaria grasses: Central America and Mexico. Livestock Research for Rural Development 16(12):98. bit.ly/3zkMHoG

Holmann F; Rivas L; Pérez E; Castro C; Schuetz P; Rodríguez J. 2008. The beef chain in Costa Rica: Identifying critical issues for promoting its modernization, efficiency and competitiveness. Livestock Research for Rural Development 20(4):51. bit.ly/3BaKAEr

Iglesias JM; Simón L; Lamela L; Hernández D; Hernández I; Milera M; Castillo E; Sánchez T. 2006. Sistemas agroforestales en Cuba: algunos aspectos de la producción animal. Pastos y Forrajes 29(3):217–235. bit.ly/3B5KVZa

Iglesias JM; Simón L; Martín GJ. 2017. Sistemas silvopastoriles en el contexto cubano. Agroecología 12(1):75–82. bit.ly/3ZraeyG

INEC (Instituto Nacional de Estadística y Censo). 2023. Encuesta Nacional Agropecuaria 2022. Resultados generales de la actividad ganadera vacuna y porcina. Instituto Nacional de Estadística y Censos (INEC), San José, Costa Rica. 49 p. bit.ly/47wOeok

Kennedy PM; Charmley E. 2012. Methane yields from Brahman cattle fed tropical grasses and legumes. Animal Production Science 52(4):225–239. doi: 10.1071/AN11103

Lauric A; Torres Carbonell C; De Leo G. 2021. Utilización de suplementación líquida (melaza) para el ganado bovino en el sudoeste de la provincia de Buenos Aires, Argentina. Relevamiento de casos reales. Informe Técnico. Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina. hdl.handle.net/20.500.12123/9780

León-Velarde C; Quiroz RA. 1999. Selecting optimum ranges of technological alternatives by using response surface designs in systems analysis. En: Impact on a changing world Program Report 1997–98. International Potato Center (CIP), Lima, Perú. p. 387–393.

hdl.handle.net/10568/109460

León-Velarde C; Quiroz RA; Cañas R; Osorio J; Guerrero J; Pezo D. 2006. LIFE - SIM: Livestock Feeding Strategies Simulation Models. Natural Resources Division Working Paper 2006-1. International Potato Center (CIP), Lima, Perú. 38 p.

Lerma LM; Díaz Baca MF; Burkart S. 2022. Public policies for the development of a sustainable cattle sector in Colombia, Argentina, and Costa Rica: A comparative analysis (2010–2020). Frontiers in Sustainable Food Systems 6:722522. doi: 10.3389/fsufs.2022.722522

López O; Sánchez T; Iglesias JM; Lamela L; Soca M; Arece J; Milera MC. 2017. Los sistemas silvopastoriles como alternativa para la producción animal sostenible en el contexto actual de la ganadería tropical. Pastos y Forrajes 40(2):83–95. bit.ly/3BgrPzg

MAG (Ministerio de Agricultura y Ganadería). 2015. Estrategia para la Ganadería Baja en Carbono en Costa Rica. San José, CR. SIDE, MINAE, DCC, UNEP DTU, FIRM. 120 p. bit.ly/3BdQQLL

MAG (Ministerio de Agricultura y Ganadería). 2022. Política de Ganadería Sostenible de Costa Rica. Ministerio de Agricultura y Ganadería, Programa Nacional de Ganadería. San José, Costa Rica. 94 p. bit.ly/3XU4tYf

Maquivar-Linfoot MG; Galina-Hidalgo CS; Mendoza-Martínez GD; Verduzco-Gómez AR; Galindo-Badilla JR; Molina-Sanchez R; Estrada-Konig S. 2006. Predicción de la ganancia diaria de peso mediante el uso del modelo NRC en novillas suplementadas en el trópico húmedo de Costa Rica. Revista Científica de la Facultad de Ciencias Veterinarias de la Universidad del Zulia 16(6):634–641. bit.ly/3ZsdASj

Meo Filho P; Berndt A; Pezzopane JRM; Pedroso AF; Bernardi ACC; Rodrigues PHM; Bueno ICS; Corte RR; Oliveira PPA. 2022. Can intensified pasture systems reduce enteric methane emissions from beef cattle in the Atlantic Forest Biome?. Agronomy 12(11):2738. doi: 10.3390/agronomy12112738

Montenegro J; Barrantes E; DiLorenzo N. 2016. Methane emissions by beef cattle consuming hay of varying quality in the dry forest ecosystem of Costa Rica. Livestock Science 193:45–50. doi: 10.1016/j.livsci.2016.09.008

Montgomery DC. 1984. Design and analysis of experiments. 2nd Ed. John Wiley and Sons, New York, USA. 538 p.

Orden EA; Pezo DA; Leon Velarde CU; Domingo SN; Villar EC. 2004. Predicting body weight changes of beef cattle in the lowland rain-fed areas of Umingan, Pangasinan: A simulation model. Philippine Journal of Veterinary and Animal Sciences 30(1):185–197. bit.ly/47vzqpS

Parlasca MC; Qaim M. 2022. Meat Consumption and Sustainability. Annual Review of Resource Economics 14:17–41. doi: 10.1146/annurev-resource-111820-032340

Pérez E; Holmann F; Schuetz P; Fajardo E. 2006. Evolución de la ganadería bovina en países de América Central: Costa Rica, Guatemala, Honduras y Nicaragua. Documento de Trabajo No. 205. Centro Internacional de Agricultura Tropical (CIAT) and International Livestock Research Institute (ILRI). Cali, Colombia. 46 p. hdl.handle.net/10568/70051

Pérez E; Soca M; Díaz L; Corzo M. 2008. Comportamiento etológico de bovinos en sistemas silvopastoriles en Chiapas, México. Pastos y Forrajes 31(2):171. bit.ly/3XMUi8M

Pezo D. 2017. Tecnologías forrajeras para la intensificación sostenible de la ganadería en el contexto del cambio climático. Revista UTN Informa 78:18–25. bit.ly/3XKcKyV

Pezo D; Ríos N; Ibrahim M; Gómez M. 2018. Silvopastoral Systems for intensifying cattle production and enhancing forest cover: The case of Costa Rica. Program on Forest. The World Bank, Washington, USA. 77 p. bit.ly/3zycLwt

Quiroz R; Loayza H; Barreda C; Gavilán C; Posadas A; Ramírez DA. 2017. Linking process-based potato models with light reflectance data: Does model complexity enhance yield prediction accuracy?. European Journal of Agronomy 82(A):104–112. doi: 10.1016/j.eja.2016.10.008

Rao I; Peters M; Castro A; Schultze-Kraft R; White D; Fisher M; Miles J; Lascano C; Blümmel M; Bungenstab D; Tapasco J; Hyman G; Bolliger A; Paul B; van der Hoek R; Maass B; Tiemann T; Cuchillo M; Douxchamps S; Villanueva C; Rincón Á; Ayarza M; Rosenstock T; Subbarao G; Arango J; Cardoso JA; Worthington M; Chirinda N; Notenbaert A; Jenet A; Schmidt A; Vivas N; Lefroy R; Fahrney K; Guimarães E; Tohme J; Cook S; Herrero M; Chacón M; Searchinger T; Rudel T. 2015. LivestockPlus–The sustainable intensification of forage-based agricultural systems to improve livelihoods and ecosystem services in the tropics. CIAT Publication No. 407. Centro Internacional de Agricultura Tropical (CIAT). Cali, Colombia. 40 p. hdl.handle.net/10568/68840

Reyer CPO; Adams S; Albrecht T; Baarsch F; Boit A; Canales Trujillo N; Cartsburg M; Coumou D; Eden A; Fernandes E; Langerwisch F; Fanny Langerwisch; Marcus R; Mengel M; Mira-Salama D; Perette M; Pereznieto P; Rammig A; Reinhardt J; Robinson A; Rocha M; Sakschewski B; Schaeffer M; Schleussner CF; Serdeczny O; Thonicke K. 2017. Climate change impacts in Latin America and the Caribbean and their implications for development. Regional Environmental Change 17:1601–1621. doi: 10.1007/s10113-015-0854-6

Ríos-Gutiérrez LA. 2021. Evaluación del rendimiento y calidad de pastos mejorados en asocio con árboles dispersos de Guazuma ulmifolia en sistemas doble propósito, Los Santos, Panamá. Tesis de Maestría. Centro Agronómico Tropical de Investigación y Enseñanza (CATIE), Turrialba, Costa Rica. handle/11554/11544

Russo RO. 2015. Reflexiones sobre los sistemas silvopastoriles. Pastos y Forrajes 38(2):157–161. bit.ly/47t9TNU

Sánchez J. 2007. Utilización eficiente de las pasturas tropicales en la alimentación de ganado lechero. En: Memorias del XI Seminario de Pastos y Forrajes en sistemas de producción animal, Barquisimeto, Venezuela, 12–14 de abril de 2007. p. 14–30. bit.ly/4d9QdQB

Soca PM; Cabrera MR; Bruni MA. 2007. Nivel de suplementación, ganancia de peso vivo y conducta de vacunos en crecimiento bajo pastoreo de campo natural. Agrociencia Uruguay 11(1):1–10. doi: 10.31285/AGRO.11.763

Tothill JC; Hargreaves JNG; Jones RM. 1978. Botanal- A comprehensive sampling and computing procedure for estimating pasture yield and composition. Tropical Agronomy Technical Memorandum 8:26.

Van Soest PJ. 1994. Nutritional Ecology of the Ruminant. 2nd Ed. Cornell University Press, Ithaca, NY. USA.

Van Soest PJ; Robertson JB. 1980. Systems of analysis for evaluating fibrous feeds. En: Pigden WJ; Balch CC; Graham M, eds. Standardization of analytical methodology for feeds. Proceedings of a workshop held in Ottawa, Canada, 12–l4 March 1979. International Development Research Centre (IDRC), Ottawa, Canada. p. 49–60. bit.ly/47rufY1

Villalobos L; Arce J. 2014. Evaluación agronómica y nutricional del pasto estrella africana (Cynodon nlemfuensis) en la zona de Monteverde, Puntarenas, Costa Rica. II. Valor nutricional. Agronomía Costarricense 38(1):133–145. bit.ly/4eo1Owk

Willmott CJ. 1982. Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society 63(11):1309–1313. doi: 10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2

Zepner L; Karrasch P; Wiemann F; Bernard L. 2020. ClimateCharts.net–an interactive climate analysis web platform. International Journal of Digital Earth 14(3):338–356. doi: 10.1080/17538947.2020.1829112

How to Cite

Hernández, J. D., Ramírez, A., Pezo, D., Villanueva, C., & Quiroz, R. (2024). Simulation of grazing cattle fattening systems in the humid tropics of Costa Rica depending on stocking rate, level of supplemental molasses and time of the year. Tropical Grasslands-Forrajes Tropicales, 12(3), 173–190. https://doi.org/10.17138/tgft(12)173-190

Downloads

Download data is not yet available.

Published

2024-10-01

Issue

Section

Research Papers