Energy value of kikuyu grass (Cenchrus clandestinus) for milk production in the highland tropics
DOI:
https://doi.org/10.17138/tgft(12)200-212Abstract
Kikuyu grass (Cenchrus clandestinus) is the predominant forage option in the highland tropics of Colombia; hence, it is quite relevant for ration formulation to know its in vivo energy value. The objectives of this study were: (i) To determine the energy density of kikuyu grass in terms of digestible energy (DE), metabolizable energy (ME), and net energy (NE) through balance trials with Holstein cows; (ii) To evaluate the potential of kikuyu grass to sustain milk production in animals primarily fed on pasture; (iii) To estimate the substitution rate (SR) of kikuyu grass, defined as the reduction in pasture intake when a concentrate is incorporated into the diet as a supplement. A cross-sectional design of descriptive nature was used, in which four lactating cows with 196 days in lactation were employed, consuming kikuyu grass ad libitum (98.4% of total intake) plus 0.3 kg of supplement/animal/day. Energy losses through feces, urine, enteric methane emissions, and heat production were quantified to perform energy partitioning; also, milk production, primarily from a grass-based diet, was determined. After restricting concentrate intake, all animals lost weight (-2.4%), increased grass dry matter (DM) intake (+24.6%) and reduced total DM intake (-17.2%) and fat-corrected milk yield (4% FCM, -18.3%). The energy density of the diet in terms of DE and ME was 2.78±0.13 and 2.37±0.08 Mcal/kg DM, respectively, while its estimated NE content was 1.39±0.26 Mcal/kg DM. Milk production based on pasture, as estimated through the energy balance, was 13.20±3.84, ranging between 8.8 and 15.9 kg 4% FCM/animal/day. The SR was 0.56±0.10 kg DM of grass/ kg DM of concentrate.
References
Agnew RE; Yan T. 2000. Impact of recent research on energy feeding systems for dairy cattle. Livestock Production Science 66(3):197–215. doi: 10.1016/S0301-6226(00)00161-5
Angulo J; Nemocón AM; Posada SL; Mahecha L. 2022. Producción, calidad de leche y análisis económico de vacas Holstein suplementadas con ensilaje de botón de oro (Tithonia diversifolia) o ensilaje de maíz. Biotecnología en el Sector Agropecuario y Agroindustrial 20(1):27–40. doi: 10.18684/rbsaa.v20.n1.2022.1535
Archimède H; Eugène M; Magdeleine CM; Boval M; Martin C; Morgavi DP; Lecomte P; Doreau M. 2011. Comparison of methane production between C3 and C4 grasses and legumes. Animal Feed Science and Technology 166–167:59–64. doi: 10.1016/j.anifeedsci.2011.04.003
Balthrop J; Brand B; Cowie RA; Danier J; De Boever J; Jonge L de; Jackson F; Makkar HPS; Piotrowski C. 2011. Quality assurance for animal feed analysis laboratories, 1a ed., Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. fao.org/4/i2441e/i2441e00.htm
Bargo F; Varga GA; Muller LD; Kolver ES. 2003. Pasture intake and substitution rate effects on nutrient digestion and nitrogen metabolism during continuous culture fermentation. Journal of Dairy Science 86(4):1330–1340. doi: 10.3168/jds.S0022-0302(03)73718-7
Brouwer E. 1965. Report of Sub-Committee on Constants and Factors. In Blaxter KL (ed). Proceedings of the 3rd Symposium on Energy Metabolism. Academic Press, London, UK, p. 441–443.
Carulla JE; Pabón ML. 2006. Como aumentar la proteína y la grasa láctea desde las fincas: estrategias de manejo del pastoreo y de la suplementación para mejorar la calidad composicional de la leche. En: Memorias del V Seminario Internacional Competitividad en Carne y Leche, Medellín, Colombia, 19–20 de octubre de 2006. p. 139–155.
bit.ly/47k0N6i
Caro F; Correa HJ. 2006. Digestibilidad posruminal aparente de la materia seca, la proteína cruda y cuatro macrominerales en el pasto kikuyo (Pennisetum clandestinum) cosechado a dos edades de rebrote. Livestock Research for Rural Development 18(10):143. bit.ly/4ej9Qq7
Church DC; Pond WG; Pond KR. 2002. Fundamentos de nutrición y alimentación de animales. 2 ed., Limusa S.A., México. ISBN 968-18-5299-0
Conrad HR; Weiss WP; Odwongo WO; Shockey WL. 1984. Estimating net energy lactation from components of cell solubles and cell walls. Journal of Dairy Science 67(2):427–436. doi: 10.3168/jds.S0022-0302(84)81320-X
Correa HJ; Pabón ML; Carulla JE. 2008. Valor nutricional del pasto kikuyo (Pennisetum clandestinum Hoechst Ex Chiov.) para la producción de leche en Colombia (Una revisión): II. Contenido de energía, consumo, producción y eficiencia nutricional. Livestock Research for Rural Development 20(4):61. bit.ly/47iRcfM
Correa HJ; Pabón ML; Carulla JE. 2009. Estimación del consumo de materia seca en vacas Holstein bajo pastoreo en el trópico alto de Antioquia. Livestock Research for Rural Development 21(4):59. bit.ly/4e7F2c2
Correa HJ; Rodríguez YG; Pabón ML; Carulla JE. 2012. Efecto de la oferta de pasto kikuyo (Pennisetum clandestinum) sobre la producción, la calidad de la leche y el balance de nitrógeno en vacas Holstein. Livestock Research for Rural Development 24(11):204. bit.ly/4dTSe4F
Detmann E; Valadares Filho SC; Pina DS; Henriques LT; Paulino MF; Magalhães KA; Silva PA; Chizzotti ML. 2008. Prediction of the energy value of cattle diets based on the chemical composition of the feeds under tropical conditions. Animal Feed Science and Technology 143(1–4):127–47. doi: 10.1016/j.anifeedsci.2007.05.008
Donker JD; Naik DG. 1979. Predicting total digestible nutrients and estimated net energy of dairy cow rations from chemical components. Journal of Dairy Science 62(3):424–432. doi: 10.3168/jds.S0022-0302(79)83262-2
Erasmus L. 2009. Milk production from cows grazing kikuyu-ryegrass pasture systems. MSc Thesis. University of Pretoria, South Africa. hdl.handle.net/2263/27295
Escobar L; Bolívar DM; García D. 2010. Uso de la excreción de creatinina como método alternativo a la colecta total de orina en vacas Holstein. Revista Facultad Nacional de Agronomía Medellín 63(2):5567–5576. handle/unal/37191
Fulkerson WJ; Nandra KS; Clark CF; Barchia I. 2006. Effect of cereal-based concentrates on productivity of Holstein-Friesian cows grazing short-rotation ryegrass (Lolium multiflorum) or kikuyu (Pennisetum clandestinum) pastures. Livestock Science 103(1–2):85–94. doi: 10.1016/j.livsci.2006.01.005
García SC; Islam MR; Clark CEF; Martin PM. 2014. Kikuyu-based pasture for dairy production: a review. Crop and Pasture Science 65(8):787–797. doi: 10.1071/CP13414
Hall MB. 2023. Corrected milk: Reconsideration of common equations and milk energy estimates. Journal of Dairy Science 106(4):2230–2246. doi: 10.3168/jds.2022-22219
Harlan DW; Holter JB; Hayes HH. 1991. Detergent fiber traits to predict productive energy of forages fed free choice to nonlactating dairy cattle. Journal of Dairy Science 74(4):1337–1353. doi: 10.3168/jds.S0022-0302(91)78289-1
Henning WP; Barnard HH; Venter JJ. 1995. Effect of grazing cycle on milk production of cows on kikuyu pasture. South African Journal of Animal Science 25(1):7–12. bit.ly/3MEx6TV
Homolka P; Koukolová V; Podsedníček M; Hlaváčková A. 2012. Nutritive value of red clover and lucerne forages for ruminants estimated by in vitro and in vivo digestibility methods. Czech Journal of Animal Science 57(10):454–468. doi: 10.17221/6346-CJAS
Kodeš A; Mudřík Z; Hučko B; Plachý V. 2015. Calculating the energy value meadow hay-NEL, based solely on the NDF and compared with commonly used calculations NEL. Acta Fytotechnica et Zootechnica 18(4):95–98. doi: 10.15414/afz.2015.18.04.95-98
Li Jiangong; Green-Miller AR; Shike DW. 2019. Integrity Assessment of Open-Circuit Respiration Chambers for Ruminant Animal Indirect Calorimetry. Transactions of the ASABE 62(5):1185–1193. doi: 10.13031/trans.13220
Mahanta SK; García SC; Islam MR. 2020. Forage based feeding systems of dairy animals: issues, limitations and strategies. Range Management and Agroforestry 41(2):188–199. bit.ly/3MYMVVP
Marais JP. 2001. Factors affecting the nutritive value of kikuyu grass (Pennisetum clandestinum) - a review. Tropical Grasslands 35(2):65–84. bit.ly/4cSIgiE
Mendoza-Martínez GD; Plata-Pérez FX; Espinosa-Cervantes R; Lara-Bueno A. 2008. Manejo nutricional para mejorar la eficiencia de utilización de la energía en bovinos. Universidad y Ciencia 24(1):75–87. bit.ly/3zoei8e
Mertens DR. 1987. Predicting intake and digestibility using mathematical models of ruminal function. Journal of Animal Science 64(5):1548–1558. doi: 10.2527/jas1987.6451548x
Mertens DR. 1994. Regulation of forage intake. In: Fahey Jr GC, ed. Forage quality, evaluation, and utilization. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, WI. p. 450–493. doi: 10.2134/1994.foragequality.c11
Moe PW; Flatt WP; Tyrell HF. 1972. Net energy value of feeds for lactation. Journal of Dairy Science 55(7):945–958. doi: 10.3168/jds.S0022-0302(72)85601-7
NASEM (National Academies of Sciences, Engineering, and Medicine). 2021. Nutrient Requirements of Dairy Cattle. 8th ed, National Academies Press, Washington (DC), USA. doi: 10.17226/25806
Nkrumah JD; Okine EK; Mathison GW; Schmid K; Li C; Basarad JA; Price MA; Wang Z; Moore SS. 2006. Relationships of feedlot feed efficiency, performance, and feeding behavior with metabolic rate, methane production, and energy partitioning in beef cattle. Journal of Animal Science 84(1):145–153. doi: 10.2527/2006.841145x
NRC (National Research Council). 2001. Nutrient Requirements of Dairy Cattle. 7th ed, National Academies Press, Washington (DC), USA. doi: 10.17226/9825
Portillo PA; Meneses DH; Morales SP; Cadena MM; Castro E. 2019. Evaluación y selección de especies forrajeras de gramíneas y leguminosas en Nariño, Colombia. Pastos y Forrajes 42(2):93–103. bit.ly/4ecn0VX
Reeves M. 1997. Milk production from kikuyu (Pennisetum clandestinum) grass pastures. Ph.D. Thesis. The University of Sydney, Sydney, New South Wells, Australia.
hdl.handle.net/2123/14526
Reynolds CK. 2000. Forage evaluation using measurements of energy metabolism. In: Givens DI; Owen E; Axford RFE; Omed HM, eds. Forage evaluation in ruminant nutrition. CAB International, Wallingford, England. p. 95–111. doi: 10.1079/9780851993447.0095
Rosero RR; Posada SL. 2017. Factor de emisión de metano entérico para vacas Holstein lactantes en la zona norte de Antioquia – Colombia. Livestock Research for Rural Development 29(6):119. bit.ly/4eghbqz
Royani JI; Utami RN; Maulana S; Agustina H; Herdis; Herry R; Sarmedi; Mansyur. 2021. Biodiversity of Kikuyu Grass (Pennisetum clandestinum Hochst. ex Chiov) in Indonesia as high protein forage based on morphology and nutrition compared. In: 1st International Conference on Livestock in Tropical Environment, Surakarta, Indonesia, 1–2 September 2021. IOP Conference Series: Earth and Environmental Science, 902:012006. doi: 10.1088/1755-1315/902/1/012006
Soto C; Valencia A; Galvis RD; Correa HJ. 2005. Efecto de la edad de corte y del nivel de fertilización nitrogenada sobre el valor energético y proteico del pasto kikuyo (Pennisetum clandestinum). Revista Colombiana de Ciencias Pecuarias 18(1):17–26. doi: 10.17533/udea.rccp.323991
Weiss WP. 1993. Predicting energy values of feeds. Journal of Dairy Science 76(6):1802–1811. doi: 10.3168/jds.S0022-0302(93)77512-8
Weiss WP. 1998. Estimating the available energy content of feeds for dairy cattle. Journal of Dairy Science 81(3):830–839. doi: 10.3168/jds.S0022-0302(98)75641-3
Weiss WP; Tebbe AW. 2019. Estimating digestible energy values of feeds and diets and integrating those values into net energy systems. Translational Animal Science 3(3):953–961. doi: 10.1093/tas/txy119
Williams CH; David DJ; Lismaa O. 1962. The determination of chromic oxide in faeces samples by atomic absorption spectrophotometry. The Journal of Agricultural Science 59(3):381–385. doi: 10.1017/S002185960001546X
How to Cite
Downloads
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Tropical Grasslands-Forrajes Tropicales
This work is licensed under a Creative Commons Attribution 4.0 International License.