Thermal limits to stoloniferous leaves and root growth in Paspalum notatum, a south American native grass
DOI:
https://doi.org/10.17138/tgft(13)28-39Abstract
In tropical regions the cultivation of African grasses for animal forage is extensive and an ecophysiological alternative is to stimulate the use of native species especially in a scenario of global temperature change. The thermal limits to leaf and root growth in Paspalum notatum a South American native grass were evaluated. Stolon fragments with roots and dry parts removed and the same number of nodes were placed in transparent plastic boxes on moistened filter papers and transferred to chambers at constant temperatures of 15, 20, 25, 30, 35 °C and alternating temperatures of 25/15 °C and 30/20 °C, all in a 12 h photoperiod. Leaf production was evaluated daily for 30 days. Stolon fragments showed leaf growth in all temperatures, except at 15 °C. The thermal range limits were 14.3 °C as base temperature and 39.2°C as ceiling temperature. Results showed that 50 degree days were necessary for 50% of leaf growth by the stolons. The largest leaf area occurred at 25 to 30 °C and the largest specific leaf area was at 25 °C. The optimal temperature for growth was 30 °C with higher root growth at 20 °C and in alternating temperatures. Results indicate that P. notatum has potential to grow in a wide range of temperatures and that the increase of global average temperature should not affect its distribution in its current habitat, presenting promising traits as an option for pastures in all tropical regions.
References
Acero-Camelo RA; Molina MRE; Parra-Coronado A; Fischer G; Carulla-Fornaguera JE. 2021. Base growth temperature and phyllochron for kikuyu grass (Cenchrus clandestinus; Poaceae). Acta Biológica Colombiana 26(2):160–169. doi: 10.15446/abc.v26n2.83199
Aliscioni SS; Denham SS. 2008. Rachis of the genus Paspalum L. (Poaceae: Panicoideae: Paniceae): Anatomy and taxonomic significance of the primary branches of the inflorescences. Flora - Morphology, Distribution, Functional Ecology of Plants 203(1):60–76. doi: 10.1016/j.flora.2007.01.001
Andrade AC; Fonseca DM da; Lopes RS; Nascimento Júnior D; Cecon PR; Queiroz DS; Pereira DH; Reis ST. 2005. Morphogenetic and structural characteristics of ‘Napier’ elephant grass fertilized and irrigated. Ciência e Agrotecnologia 29(1):150–159. (In Portuguese). doi: 10.1590/S1413-70542005000100019
Batista LAR; Neto AR. 2000. Espécies do gênero Paspalum com potencial forrageiro. Documentos No. 29. Embrapa Pecuária Sudeste, São Carlos, São Paulo, Brasil. handle/doc/45323
Buizer M; Humphreys D; Jong W. 2014. Climate change and deforestation: The evolution of an intersecting policy domain. Environmental Science & Policy 35:1–11. doi: 10.1016/j.envsci.2013.06.001
Bykova O; Chuine I; Morin X; Higgins SI. 2012. Temperature dependence of the reproduction niche and its relevance for plant species distributions. Journal of Biogeography 39(12):2191–2200. doi: 10.1111/j.1365-2699.2012.02764.x
Corre N; Bouchart V; Ourry A; Boucaud J. 1996. Mobilization of nitrogen reserves during regrowth of defoliated Trifolium repens L. and identification of potential vegetative storage proteins. Journal of Experimental Botany 47(8):1111–1118. doi: 10.1093/jxb/47.8.1111
Covell S; Ellis RH; Roberts EH; Summerfield RJ. 1986. The influence of temperature on seed germination rate in grain legumes: I. A comparison of chickpea, lentil, soybean and cowpea at constant temperatures. Journal of Experimental Botany 37(5):705–715. doi: 10.1093/jxb/37.5.705
Daibes LF; Cardoso VJM. 2018. Seed germination of a South American forest tree described by linear thermal time models. Journal of Thermal Biology 76:156–164. doi: 10.1016/j.jtherbio.2018.07.019
Dieleman CM; Branfireun BA; Mclaughlin JW; Lindo Z. 2015. Climate change drives a shift in peatland ecosystem plant community: implications for ecosystem function and stability. Global Change Biology 21(1):388–395. doi: 10.1111/gcb.12643
Donaghy DJ; Fulkerson WJ. 1998. Priority for allocation of water-soluble carbohydrate reserves during regrowth of Lollim perenne. Grass and Forage Science 53(3):211–218. doi: 10.1046/j.1365-2494.1998.00129.x
Duarte AA; Silva CJ da; Marques AR; Modolo LV; Lemos Filho JP. 2019. Does oxidative stress determine the thermal limits of the regeneration niche of Vriesea friburgensis and Alcantarea imperialis (Bromeliaceae) seedlings? Journal of Thermal Biology 80:150–157. doi: 10.1016/j.jtherbio.2019.02.003
D´Antonio CM; Vitousek PM. 1992. Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annual Review of Ecology and Systematics 23:63–87. doi: 10.1146/annurev.es.23.110192.000431
Edenhofer O; Pichs-Madruga R; Sokona Y; Farahani E; Kadner S; Seyboth K; Adler A; Baum I; Brunner S; Eickemeier P; Kriemann B; Savolainen J; Schlömer S; von Stechow C; Zwickel T; Minx JC, eds. 2014. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. bit.ly/4gdtAMu
Egan MK; Boschma SP; Harden S; Harris CA; Edwards C. 2017. Temperatures for seedling emergence of tropical perennial grasses. Crop and Pasture Science 68(5):493–500. doi: 10.1071/CP17139
Ellis RH; Covell S; Roberts EH; Summerfield RJ. 1986. The influence of temperature on seed germination rate in grain legumes: II. Intraspecific variation in chickpea (Cicer arietinum L.) at constant temperatures. Journal of Experimental Botany 37(10):1503–1515. doi: 10.1093/jxb/37.10.1503
Faria AP de; Fernandes GW; França MGC. 2015. Predicting the impact of increasing carbon dioxide concentration and temperature on seed germination and seedling establishment of African grasses in Brazilian Cerrado. Austral Ecology 40(8):962–973. doi: 10.1111/aec.12280
Fogliatto S; Milan M; De Palo F; Vidotto F. 2020. The effect of various after-ripening temperature regimens on the germination behaviour of Ambrosia artemisiifolia. Plant Biosystems 154(2):165–172. doi: 10.1080/11263504.2019.1578282
Fulkerson WJ; Donaghy DJ. 2001. Plant-soluble carbohydrates reserves and senescence – key criteria for developing an effective grazing management system for ryegrass-based pastures: a review. Australian Journal of Experimental Agriculture 41(2):261–275. doi: 10.1071/EA00062
Gates RN; Quarin CL; Pedreira CGS. 2004. Bahiagrass. In: Moser LE; Burson BL; Sollenberger LE, eds. 2004. Warm-season (C4) grasses. Agronomy Monograph 45. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, Wisconsin, USA. p. 651–680. doi: 10.2134/agronmonogr45.c19
Ghil M. 2002. Natural climate variability. In: MacCraken M; Perry J, eds. 2002. Encyclopedia of global environmental change. Wiley & Sons, Chichester, United Kingdom p. 544–549. bit.ly/3E2L2WT
Gunn S; Farrar JF. 1999. Effects of a 4° C increase in temperature on partitioning of leaf area and dry mass, root respiration and carbohydrates. Functional Ecology 13(1):12–20. doi: 10.1046/j.1365-2435.1999.00003.x
Hodges T; Evans DW. 1992. Leaf emergence and leaf duration related to thermal time calculations in Ceres-Maize. Agronomy Journal 84(4):724–730. doi: 10.2134/agronj1992.00021962008400040034x
INMET (National Institute of Meteorology). 2021. Accessed 26 August 2023. portal.inmet.gov.br
Kaspar TC; Bland WL. 1992. Soil temperature and root growth. Soil Science 154(4):290–299. doi: 10.1097/00010694-199210000-00005
Kellogg EA. 2001. Evolutionary history of the grasses. Plant Physiology 125(3):1198–1205. doi: 10.1104/pp.125.3.1198
Klanderud K; Totland O. 2005. Simulated climate change altered dominance hierarchies and diversity of an alpine biodiversity hotspot. Ecology 86(8):2047–2054. doi: 10.1890/04-1563
Kotak S; Larkindale J; Lee U; von Koskull-Doring P; Vierling E; Scharf K-D. 2007. Complexity of the heat stress response in plants. Current Opinion in Plant Biology 10(3):310–316. doi: 10.1016/j.pbi.2007.04.011
Law RD; Crafts-Brandner SJ. 1999. Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiology 120(1):173–182. doi: 10.1104/pp.120.1.173
Leite GG; Gomes AC; Neto CRB. 1998. Expansão e senescência de folhas de gramíneas nativas dos Cerrados submetidas à queima. Pasturas Tropicales 20(3):16–21. bit.ly/3WsMh87
Liu Mengzhou; Wang Zhengwen; Li Shanshan; Lu Xiaotao; Wang Xiaobo; Han Xingguo. 2017. Changes in specific leaf area of dominant plants in temperate grasslands along a 2500-km transect in northern China. Scientific Reports 7:10780. doi: 10.1038/s41598-017-11133-z
Martins FB; Silva JC da; Streck NA. 2007. Estimating base temperature for leaf appearence rate and the phyllochron in two eucaliptus species during seedling phase. Revista Árvore 31(3)373–381. (In Portuguese). doi: 10.1590/S0100-67622007000300002
Martuscello JA; Jank L; Gontijo Neto MM; Laura VA; Cunha DNFV da. 2009. Genus Brachiaria grass yields under different shade levels. Revista Brasileira de Zootecnia 38(7):1183–1190. (In Portuguese). doi: 10.1590/S1516-35982009000700004
McGraw JB; Garbutt K. 1990. Demographic growth analysis. Ecology 71(3):1199–1204. doi: 10.2307/1937388
Moles AT; Perkins SE; Laffans SW; Flores-Moreno H; Awasthy M; Tindall ML; Sack L; Pitman A; Kattge J; Aarssen LW; Anand M; Bahn M; Blonder B; Cavender-Bares J; Cornelissen JHC; Cornwell WK; Díaz S; Dickie JB; Freschet GT; Griffiths JG; Gutierrez AG; Hemmings FA; Hickler T; Hitchcock TD; Keighery M; Kleyer M; Kurokawa H; Leishman MR; Kenwin Liu; Niinemets Ü; Onipchenko V; Onoda Y; Penuelas J; Pillar VD; Reich PB; Shiodera S; Siefert A; Sosinski Jr EE; Soudzilovskaia NA; Swaine EK; Swenson NG; van Bodegom PM; Warman L; Weiher E; Wright IJ; Hongxiang Zhang; Zobel M; Bonser SP. 2014. Which is a better predictor of plant traits: temperature or precipitation? Journal of Vegetation Science 25(5):1167–1180. doi: 10.1111/jvs.12190
Nabinger C; Ferreira ET; Freitas AK; Carvalho PCF; Sant’Anna DM. 2009. Produção animal com base no campo nativo: aplicações de resultados de pesquisa. In: Pillar VDP; Muller SC; Castilhos ZMS; Jacques AVA, eds. Campos Sulinos, conservação e uso sustentável da biodiversidade, Ministério do Meio Ambiente Brasilia, DF, Brazil. p. 175–198. bit.ly/3WyST4G
Nagelmuller S; Kirchgessner N; Yates S; Hiltpold M; Walter A. 2016. Leaf length tracker: a novel approach to analyse leaf elongation close to the thermal limit of growth in the field. Journal of Experimental Botany 67(6):1897–1906. doi: 10.1093/jxb/erw003
Nakao EA; Cardoso VJM. 2016. Analysis of thermal dependence on the germination of braquiarão seeds using the thermal time model. Brazilian Journal of Biology 76(1):162–168. doi: 10.1590/1519-6984.15714
Pimenta KM; Rua GH; Leite KRB; Oliveira RP. 2013. Paspalum giuliettiae (Poaceae, Panicoideae), a new grass from ‘Campos Rupestres’ of the Chapada Diamantina, Bahia, Brazil. Systematic Botany 38(3):624–630. doi: 10.1600/036364413X670331
Pivello VR; Shida CN; Meirelles ST. 1999. Alien grasses in Brazilian savannas: A threat to the biodiversity. Biodiversity and Conservation 8:1281–1294. doi: 10.1023/A:1008933305857
Poorter H; Niinemets U; Walter A; Fiorani F; Schurr U. 2010. A method to construct dose–response curves for a wide range of environmental factors and plant traits by means of a meta-analysis of phenotypic data. Journal of Experimental Botany 61(8):2043–2055. doi: 10.1093/jxb/erp358
Porter JR. 2005. Rising temperatures are likely to reduce crop yields. Nature 436(174). doi: 10.1038/436174b
R Core Team 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. r-project.org
Ravikesavan R; Jeeva G; Poornima Jency J; Muthamilarasan M; Francis N. 2023. Kodo Millet (Paspalum scorbiculatum L.). In: Farooq M; Sissique KHM, eds. Neglected and underutilized crops. Academic Press. p. 279–304. doi: 10.1016/B978-0-323-90537-4.00019-3
Ribeiro RV; Lyra GB; Santiago AV; Pereira AR; Machado EC; Oliveira RF. 2006. Diurnal and seasonal patterns of leaf gas exchange in bahiagrass (Paspalum notatum Flugge) growing in a subtropical climate. Grass and Forage Science 61(3):293–303. doi: 10.1111/j.1365-2494.2006.00533.x
Sage RF. 2004. The evolution of C4 photosynthesis. New Phytologist 161(2):341–370. doi: 10.1111/j.1469-8137.2004.00974.x
Sanchez B; Rasmussen A; Porter JR. 2014. Temperatures and the growth and development of maize and rice: a review. Global Change Biology 20(2):408–417. doi: 10.1111/gcb.12389
Scherrer D; Korner C. 2011. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. Journal of Biogeography 38(2):406–416. doi: 10.1111/j.1365-2699.2010.02407.x
Sharkey TD. 2005. Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant, Cell & Environment 28(3):269–277. doi: 10.1111/j.1365-3040.2005.01324.x
Shi Zheng; Sherry R; Xu Xia; Hararuk O; Souza L; Jiang Lifen; Xia Jianyang; Liang Junyi; Luo Yiqi. 2015. Evidence for long‐term shift in plant community composition under decadal experimental warming. Journal of Ecology 103(5):1131–1140. doi: 10.1111/1365-2745.12449
SpeciesLink. 2021. Reference Center for Environmental Information, Brazil. Accessed 11 July 2023. specieslink.net
Streck NA. 2002. A generalized vernalization response function for lily (Lilium spp.). Revista Brasileira de Agrometeorologia 10(2):221–228. bit.ly/3PNQ8J4
Streck NA; Lago I; Buriol GA; Heldwein AB; Tibola T. 2002. A non-linear model to simulate node appearance in muskmelon (Cucumis melo L.) grown inside plastic greenhouse as a function of air temperature. Revista Brasileira de Agrometeorologia 14(2):210–216. bit.ly/3Cu8MCH
Thomas CD; Cameron A; Green RE; Michel Bakkenes; Beaumont LJ; Collingham YC; Erasmus BFN; Siqueira MF de; Grainger A; Hannah L; Hughes L; Huntley B; van Jaarsveld AS; Midgley GF; Miles L; Ortega-Huerta MA; Peterson AT; Phillips OL; Williams SE. 2004. Extinction risk from climate change. Nature 427(6970):145–148. doi: 10.1038/nature02121
Tinoco-Ojanguren C; Reyes-Ortega I; Sánchez-Coronado ME; Molina-Freaner F; Orozco-Segovia A. 2016. Germination of an invasive Cenchrus ciliaris L. (buffel grass) population of the Sonoran Desert under various environmental conditions. South African Journal of Botany 104:112–117. doi: 10.1016/j.sajb.2015.10.009
van Esbroeck GA; Hussey MA; Sanderson MA. 1997. Leaf appearance rate and final leaf number of Switchgrass cultivars. Crop Science 37(3):864–870. doi: 10.2135/cropsci1997.0011183X003700030028x
Walther GR; Post E; Convey P; Menzel A; Parmesan C; Beebee TJC; Fromentin J-M; Hoegh-Guldberg O; Bairlein F. 2002. Ecological responses to recent climate change. Nature 416:389–395. doi: 10.1038/416389a
Xue Qingwu; Weiss A; Baenziger PS. 2004. Predicting leaf appearance in field-grown winter wheat: evaluating linear and non-linear models. Ecological Modelling 175(3):261–270. doi: 10.1016/j.ecolmodel.2003.10.018
Yamori W; Hikosaka K; Way DA. 2014. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynthesis Research 119(1–2):101–117. doi: 10.1007/s11120-013-9874-6
How to Cite
Downloads
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Tropical Grasslands-Forrajes Tropicales

This work is licensed under a Creative Commons Attribution 4.0 International License.