Parámetros fermentativos del ensilaje del pasto guinea (Megathyrsus maximus) cv. BRS Zuri cosechado en diferentes horarios

Authors

DOI:

https://doi.org/10.17138/tgft(13)58-67

Abstract

This study investigates the influence of harvest time during the day (06:00, 09:00, 12:00, 15:00 y 18:00 hours) on the quality of guinea grass (Megathyrsus maximus) cv. BRS Zuri silage. The pasture was harvested 45 days after the last cut, chopped and stored in PVC microsilos for 45 days. Fresh forage ensilability parameters, as well as fermentative and nutritional parameters of silage were evaluated. The concentration of soluble carbohydrates increased linearly depending on the the harvest time and consequent exposure to solar radiation, with values ranging from 1.07 to 2.07% between 06:00 and 18:00 h, respectively (P=0.001). The lowest values for effluent losses, pH, and N-NH3 were observed at 15:00 h, with significant linear and quadratic effects (P≤0.05) for the three variables. The harvest time influenced quadratically (P≤0.001) the DM content of the silage, with 17.14 and 22.64% DM at 06:00 h and 15:00 h, respectively. Crude protein content was also influenced by harvest time, with the highest value (13.78%) at 15:00 h and the lowest at 06:00 h (10.37%) (P≤0.05). Under the conditions of the study, harvesting guinea grass cv. BRS Zuri grass in the afternoon resulted in a better-quality silage in terms of its sensorial, fermentative, and nutritional characteristics.

Author Biography

Rafael Marzall do Amaral, Universidad EARTH, San José, Costa Rica

Rafael holds a master degree from the Universidade Estadual de Maringá - Brazil and a doctorate from the Universidade Federal de Viçosa - Brazil, both in Animal Science. Before being part of the EARTH University, he teach in the Agronomy and Animal Science undergraduate courses of the Universidade Federal de Santa Catarina - Brazil, teaching classes of Alternative feeds and additives, Biostatistics, Computing applied to animal production, Beef and Dairy cattle production, Sheep and goat production, among others.

References

Avila AS de; Zambom MA; Faccenda A; Neres MA; Muxfeldt L; Schneider CR; Stum MM; Dri R; Schneider PR. 2022. Effects of adding agro-industrial by-products and bacterial inoculant at ensiling on nutritional quality and bacterial colonization of Tifton 85 [Cynodon dactylon (L.) Pers.] silages. Tropical Grasslands-Forrajes Tropicales 10(3):204–213. doi: 10.17138/TGFT(10)204-213

Barbosa MM; Detmann E; Valadares SC; Detmann KS; Franco MO; Batista ED; Rocha GC. 2017. Evaluation of methods for the quantification of ether extract contents in forage and cattle feces. Anais da Academia Brasileira de Ciências 89(2):1295–1303. doi: 10.1590/0001-3765201720160708

Bernardes TF; Gervásio JRS; De Morais G; Casagrande DR. 2019. A comparison of methods to determine pH in silages. Journal of Dairy Science 102(10):9039–9042. doi: 10.3168/jds.2019-16553

Bernardes TF; Daniel JLP; Adesogan AT; McAllister TA; Drouin P; Nussio LG; Huhtanen P; Tremblay GF; Bélanger G; Cai Y. 2018. Silage review: Unique challenges of silages made in hot and cold regions. Journal of Dairy Science 101(5):4001–4019. doi: 10.3168/jds.2017-13703

Bird P; Flannery J; Crowley E; Agin J; Goins D; Jechorek R. 2015. Evaluation of the 3M™ Petrifilm™ rapid yeast and mold count plate for the enumeration of yeast and mold in food: Collaborative study, first action 2014.05. Journal of AOAC International 98(3):767–783. doi: 10.5740/jaoacint.15-006

Buxton DR; Muck RE; Harrison JH, eds. 2003. Preharvest plant factors affecting ensiling. Silage science and technology. Agronomy Monographs Vol 42. p.199–250. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, United States. doi: 10.2134/agronmonogr42.c5

Chaverra G; Bernal E. 2000. El ensilaje en la alimentación del ganado vacuno. p. 65–123 IICA Tercer Mundo Editores, Bogotá, Colombia. handle/11324/11153

Chen Rong; Li Mao; Yang Jinsong; Chen Liwei; Zi Xuejuan; Zhou Hanlin; Tang Jun. 2022. Exploring the effect of wilting on fermentation profiles and microbial community structure during ensiling and air exposure of king grass silage. Frontiers in Microbiology 13:971426. doi: 10.3389/fmicb.2022.971426

Clavin D; Crosson P; Grant J; O’Kiely P. 2017. Red clover for silage: management impacts on herbage yield, nutritive value, ensilability and persistence, and relativity to perennial ryegrass. Grass and Forage Science 72(3):414–431. doi: 10.1111/gfs.12249

Dong Zhihao; Li Junfeng; Wang Siran; Dong Dong; Shao Tao. 2022. Time of day for harvest affects the fermentation parameters, bacterial community, and metabolic characteristics of sorghum-Sudangrass hybrid silage. mSphere 7(4):e00168–22. doi: 10.1128/msphere.00168-22

DuBois M; Gilles KA; Hamilton JK; Rebers PA; Smith F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28(3):350–356. doi: 10.1021/ac60111a017

Franco M; Rinne M. 2023. Dry matter content and additives with different modes of action modify the preservation characteristics of grass silage. Fermentation 9(7):640. doi: 10.3390/fermentation9070640

Guo Gang; Yuan Xian Jun; Wen Ai You; Liu Qiang; Zhang Shuan Lin; Shao Tao. 2015. Silage fermentation characteristics of napiergrass harvested at various times on a sunny day. Crop Science 55(1):458–464. doi: 10.2135/cropsci2014.03.0172

Heinrichs J; Jones CM. 2013. The Penn state particle separator. Penn State Extension, Department of Animal Science.

Hopkins WG; Hüner NPA. 2008. Introduction to plant physiology. 4ta edición. Wiley, New York, USA. ISBN: 978-0-470-24766-2.

Jank L; Andrade CMS de; Barbosa RA; Macedo MCM; Valério JR; Verzignassi JR; Zimmer AH; Fernandes CD; Santos MF; Simeão RM. 2017. O capim-BRS Quênia (Panicum maximum Jacq.) na diversificação e intensificação das pastagens. Comunicado Técnico 138, Embrapa Gado de Corte, Brasilia, DF, Brasil. handle/doc/1077416

Jobim CC; Nussio LG; Reis RA; Schmidt P. 2007. Avanços metodológicos na avaliação da qualidade da forragem conservada. Revista Brasileira de Zootecnia 36(suppl):101–119. doi: 10.1590/S1516-35982007001000013

Kozłowska M; Cieślak A; Jóźwik A; El-Sherbiny M; Gogulski M; Lechniak D; Gao M; Yanza YR; Vazirigohar M; Szumacher-Strabel M. 2021. Effects of partially replacing grass silage by lucerne silage cultivars in a high-forage diet on ruminal fermentation, methane production, and fatty acid composition in the rumen and milk of dairy cows. Animal Feed Science and Technology 277:114959. doi: 10.1016/j.anifeedsci.2021.114959

Kung L; Shaver RD; Grant RJ; Schmidt RJ. 2018. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science 101(5):4020–4033. doi: 10.3168/jds.2017-13909

McDonald P; Henderson AR; Heron SJE. 1991. The biochemistry of silage. Chalcombe Publications, Marlow, UK. ISBN: 0-948617-22-5.

Pereira AV; Lédo FJS; Machado JC. 2017. BRS Kurumi and BRS Capiaçu - New elephant grass cultivars for grazing and cut-and-carry system. Crop Breeding and Applied Biotechnology 17(1):59–62. doi: 10.1590/1984-70332017v17n1c9

Playne MJ; McDonald P. 1966. The buffering constituents of herbage and of silage. Journal of the Science of Food and Agriculture 17(6):264–268. doi: 10.1002/jsfa.2740170609

Van Soest PJ; Robertson JB; Lewis BA. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74(10):3583–3597. doi: 10.3168/jds.S0022-0302(91)78551-2

Volenec JJ; Nelson CJ. 2020. Carbon metabolism in forage plants. En: Moore KJ; Collins M; Nelson CJ; Redfearn DD, eds. Forages: The Science of Grassland Agriculture. John

Wiley & Sons Ltd. p. 65–84. doi: 10.1002/9781119436669.ch4

Wang Musen; Franco M; Cai Yimin; Yu Zhu. 2020. Dynamics of fermentation profile and bacterial community of silage prepared with alfalfa, whole-plant corn and their mixture. Animal Feed Science and Technology 270:114702. doi: 10.1016/j.anifeedsci.2020.114702

Wan Jiang Chun; Xie Kai Yun; Wang Yu Xiang; Liu Li; Yu Zhu; Wang Bing. 2021. Effects of wilting and additives on the ensiling quality and in vitro rumen fermentation characteristics of sudangrass silage. Animal Bioscience 34(1):56–65. 10.5713/ajas.20.0079

Weissbach F; Honig H. 1996. On the anticipation and control of the run of fermentation silage making from extensively grown forages. Landbauforschung Volkenrode 46(1):10–17. (En Alemán). bit.ly/4aowvkr

Wendt Thiex NJ. 2023. Protein (Crude) in Animal Feed: Dumas Method, AOAC Official Method 968.06. En: Latimer GW, ed. Official Methods of Analysis 22va edición. AOAC International Publications. doi: 10.1093/9780197610145.003.1396

Yahaya MS; Kawai M; Takahashi J; Matsuoka S. 2002. The effect of different moisture content and ensiling time on silo degradation of structural carbohydrate of orchardgrass. Asian-Australasian Journal of Animal Sciences 15(2):213–217. doi: 10.5713/ajas.2002.213

How to Cite

do Amaral, R. M., Vega-Cabezas, E. Y., Molina-Santana, D. S., & Rodrigues-Reis, C. E. (2025). Parámetros fermentativos del ensilaje del pasto guinea (Megathyrsus maximus) cv. BRS Zuri cosechado en diferentes horarios. Tropical Grasslands-Forrajes Tropicales, 13(1), 58–67. https://doi.org/10.17138/tgft(13)58-67

Downloads

Download data is not yet available.

Published

2025-01-31

Issue

Section

Short Communications