Genetic Resources
 Communication

Genetic Resources Communication
Number 13, 1989
Classification of a diverse collection of Rhynchosia
and some allied species

The Late W.A.T. Harding ${ }^{1}$, B.C. Pengelly ${ }^{2}$, D.G. Cameron ${ }^{3}$,
L. Pedley ${ }^{4}$ and
R.J. Williams ${ }^{2}$

4
0174

Genetic Resources Communication
 Number 13, 1989
 Classification of a diverse collection of Rhynchosia and some allied species

The Late W.A.T. Harding ${ }^{1}$, B.C. Pengelly ${ }^{2}$, D.G. Cameron ${ }^{3}$,
L. Pedley ${ }^{4}$ and
R.J. Williams ${ }^{2}$

SUMMARY:
A coilectfon of 292 accessions of the legume genus Rhynchosia and some allied species was grown and classified using morphological and agronomic attributes. The collection was divided into three subsets which were examined separately. Twenty-three morphological-agronomic groupa were identified. The classification, when considered with information from the site of origin, enabled suggestions to be made regarding selection of getmplasm for further evaluation.

1. Late of queensland Department of Primary Industries, Agriculture Branch.
of Tropical Crops and Pastures, Cunningham Laboratory 306 Carmody Road, St. Lucia, Queensland, 4067\% Australia.
2. Formerly Queensland Department of Primary Industries, Pasture Management Branch, GPO Box 46, Brisbane, Queensland, 4001, now 15 Tin Can Bay Road, Goomboorian, Gympie, 4570, Australia.
3. Queensland Department of Primary Industries, Botany Branch, Meiers Road, Indóoroopilly, Queensland, 4068, Australia.

INTRODUCTION

The legume gentus Rhynchosia is distributed in warm temperate and tropical regions of both the eastern and western hemispheres (Grear 1978). Its wide geographic distribution is associated with a large number of species (approximatêly 200) and considerable intraspecific variation. The most widespread species is R. minima which is found on all tropical continents. Most other species are confined to either the new world or the Afro-Asian region.

Many species bre found in savanna vegetation in regions with a markedly seasonal tainfall pattern. All have deep and extensive root systems and the mote xeric species are well adapted to periodic burning (Grear 1978).

Although none has become cultivated, several species may have economic value. Rhynchosia minima is a valued component of native pastures in the dry and semi-arid areas of tropical and subtropical Australia. It is especially prominent, in good seasons, on heavier textured clay soild for which few adapted legume species are available. R. sublobata was considered in Zambia as a plant with potential for domestication as a forage (Crauford and Prins, 1979) while Anderson and Naveh (1968) identified R. sennaarensis (now R. verdcourtii) as a promising indigenous forage plant in northern Tanzania. Apart from these species, agronomic information is, at best, sparse. The presence of narcotic hallucinogens in some species, especially \underline{R}. longeracemosa and \underline{R}. pyramidalis (Grear 1978), reduces the number of species for consideration as forage plants.

By 1983, a germplasm collection of 293 accessions had been assembled in Brisbane, Australia. This included material from most regions where Rhynchosia is known to be native. The collection was mainly limited to species which are hative to grassland and savanna and comprised 29 of the 200 species in the genus.

As a precursot to evaluation of pasture potential in this collection, it was considered important to characterize, identify taxonomically and classify the collettion and hence restrict the number of accessions chosen for more detailed fudy.

MATERIALS AND METHODS

Two hundred thd seventy-eight accessions were established in October/ November 1981 at the CSIRO Division of Tropical Crops and Pastures Research Station Samford, Queensland. A further 14 lines were established in January/February 1983 and a small number of lines for checking in Decentiber/January 1983/84. Nine pregerminated seedlings were established for efich accession (three in each of three 20 cm pots) and grown in glasshoutes. Thirty-four morphological and agronomic characters were recorded and used for subsequent analysis. These are listed in Appendix 1.

The occurrence of resin glands on the surfaces of leaves is characteristic of the genus (Grear 1978) and may influence palatability and digestibility, Specimens of each accession were examined for resin glands. There was little variation in gland density between leaves on a particular specimen nor in the distribution of glands on a leaf surface. The number of glatids in two $1.5 \mathrm{~mm}^{2}$ quadrats for each leaf surface was recorded from the last fully expanded leaf. This attribute was not

included in the analysis but is presented because of its possible importance in determining palatability and digestibility.

Full botanical specimens of all accessions were lodged in the Queensland Herbarium, Brisbane (BRI) for taxonomic study and reference purposes.

Numerical Methods

Numerical analysis has been used by several authors as an aid ulderstanding the variation within collections of particular taxa, e.g. Burt et al. (1971), Gramshaw et al. (1987), Bishop et al. (1988). In most cases, certainly in the more recent of these, both classificatory and graph-theoretic methods (such as minimum spanning treess) have been used. The hierarchical classification allows groups to be established and the characteristics used in structuring these groups to be identified. However, in a data set which contains continuous variation, the use of graph-theoretic techniques enables the relationships both between and within groups to be displayed. In the analysis of this data set we have used both hierarchical classificatory and graph-theoretic techniques.

The data consisted of up to 34 characters (Appendix 1) for each of the 292 accessions (Appendix 2). Past experience had shown that minimum spanning trees representing over 150 accessions were both cumbersome and difficult to display on a reasonable scale. Since we intended to use minimum spanning trees, it was necessary to divide the collection into subsets.

Use of classical taxonomy at the species level as a basis for splitting the collection did not overcome the problem for two reasons. Firstly, of the 292 accessions, 60% had been identified as R. minima, which meant that we still would have one subset of almost 200 accessions. Secondly, the removal of all R. minima accessionstwould remove the opportunity to examine affinities between \underline{R}. minima and "other species.

The method we used was to subject the whole datas set to the matrix generating program MSED and use the agglomerative polythetic program SAHN to generate a hierarchy. The programs CRAMER and GCOM were used in interpreting the classification. All of these programs were available on the TAXON package (Ross 1982).

Three subsets were established using this technique, each with 115 accessions or fewer. Each of these subsets was then subjected to the TAXON programs MSED, MST and NEAREST. The program MST generates a minimum spanning tree while the program NEAREST identifies the five nearest neighbours of an individual and is especially useful in the interpretation of minimum spanning trees.

RESULTS

The dendrogram to the 23 group level from the SAHN program on the whole data set is shown in Figure 1. Although SAHN is agglomerative, we shall discuss the results as if it were divisive as is customary.

The first split. (Figure 1) separated 'large' (Subset I) and 'small' plants, the characters contributing being pod size, seed weight, flower (both keel and standard) size. The second split divided the 'small' accessions into Subsets II and III, largely through differences in leafiet shape, pod colour and flower colour. The taxonomic composition of each of

The MST has provided a good deliniation of species within this subset with no cases of an accession being intepposed in another species.
R. longeracemosa (Group 16)

All accessiofis of this species are from collections made in central America. As the specific epithet implies, the species is characterised by large numbers of flowers per inflorescence and although some variation is displayed in the minimum spanning tree, most of this refers to flowers per inflorescence and days to flower. As mentioned previously, seed of this species contains farcotic hallucinogens (Grear 1978). It has no agronomic interest.

Eriosema edule (R, edulis) (Group 19)
The genus Efiosema differs from Rhynchosia only marginally. E. edule was represented by twelve accessions flom south and central America with considerable diversity exhibited in seed weight, flowering time, stem colour, stripe density and calyx/keel ratio. The early flowering accessions, CQ998, 78468, 78476 and 90902 are from latitudinal extremes of the collection, Argentina and northern Mexico. The most tropical collection, 55796 , has extremely small seed and is late flowering.

Collecting information available suggests that the species is adapted to lighter soils (sands and loams) in areas with semi-arid to dry environments. CPI 55796 was noted as being 'common in pasture' at the site of collection (rainfall $=1300 \mathrm{~mm}$).
R. schimperi (Groups 2 and 23)

This species is represented by five accessions and is one of three species which occur in both subsets I and II. There are clearly two distinct types of this species with almost no variation within the types. All accessions are from India although the original collecting information for CPI 25449 and CPI 67641 is not known. The types vary in several characters including seed weight, eg, CPI $25449,86.6 \mathrm{~g} / 1000$ seeds; CPI 52707, 23.9 g/1000 seeds; Habit, eg. CPI 25449 erect, CPI 52707 trailing; flower colour, eg. CPI 25449, yellow; CPI 52707, yellow/orange.

From the location of the smaller-seeded accessions on the minimum spanning tree of subset II, these three accessions are similar in many attributes to R. 苗inima. Collecting information suggests that the species is adapted to semi-arid environments and light soils.
R. totta (Group 22)

This is the second of the three species which occur in two subsets. Fifteen accessions occur in subset I and two in subset II, although these latter two accesgions were included in subset I for comparison. All accessions are from southern Africa with the two accessions from subset II having been collected near the South Africa-Mozambique border. The remaining accessibns are from regions throughout southern and eastern Africa and have larger plant parts than the two accessions from subset II. Variation within the collection is based largely on seed size and days to flowering. Morphological variation is limited.

The species appears to be adapted to a range of soils but the majority of the collection is from lighter textured soils in semi-arid environments.
the 3 subsets is shown in Table 1. There was some overlapping of species between subsets. R. totta and R. schimperi accessions occur in both Subsets I and II and R. minima occurs both in Subset II and III. In the case of R. totta and R. schimperi, all accessions were included in subset I to allow a direct comparison between types. American accessions of \underline{R}. minima not originally included in subset III were added to this subset for the same reason. The division into three subsets overcame the limitations of a taxonomic division mentioned previously since all the subsets contained fewer than 115 accessions and affinities between taxa could still, to a large extent, 'e examined.

TABLE 1. Species contained in each of the three major subsets

SUBSET I ('Large' subset)
This subset contains 13 species and 73 accessions. The MST is shown in Figure 2. Generally this subset contains accessions with larger plant parts. Table 2 shows comparisons between subsets for some of these characters.

TABLE 2. Comparison of mean values, between the three subsets, of some features measured.

SUBSET I
SUBSET II
SUBSET III

			15.01
Pod length (mm)	22.12	14.66	3.81
Pod width (mm)	7.08	4.57	5.70
Keel length (mm)	10.81	7.50	5.57
Standard width (mm)	8.70	5.80	57.16
Leaf length (mm)	71.04	43.93	13.70
Seed weight (g)	44.63	15.04	

R. usambarensis var obtusifoliata (Group 23)

1 This eccession also possessed a greyish foliage, a semi-erect habit and was late flowering. As with R. velutina, this accession is from Kenya.
R. Iuteola (Group 17)

This species is represented by only one accession from Zambia. It is distinguished from other accessions and species by the large numbers of flowers per inflorescence, (c.90), almost twice as many as the next highest. It was collected from a sandy soil in mopane woodland.

R. rothii (Group 21)

Once again, this species was represented by only one accession. It is well removed from any other on the minimum spanning tree and was distinguished by Its orbicular leaf shape, the only accession in the entire collection with this characteristic, and the large number of flowers per inflorescence, (c.30). The origin of the collection is India but its collection site details are unknown.
R. sp. CPI 90761 (Group 21)

This accession, in many characteristics similar to R . rothii, had very large seeds (180 g per 1000) and as opposed to R. rothii, very few flowers per inflorescence (3). The origin of the collection is Chihuahua, Mexico. Soil texture at the site of collection was loamy and rainfall 350 mm.

SUBSET II ('Other' Rhynchosia)

This subset contains the smaller accessions in the collection and is dominated by the large number of R. minima accessions. The minimum spanning tree of the subset is presented in figure 3. A total of 19 species are represénted, some by only one accession.
R. aurea (Nomismia, aurea) (Group 12)

These two adcessions from India are almost identical; they are annuals with a prostrate trailing habit. Both are stoloniferous, a characteristic which was found in only two other species, R. volubilis and R. diversifolia. The combination of these characteristics resulted in these accessions being far removed from any other.

R. oblatifoliata (Group 5)

This Ethiopian accession is the only representative of the species. Its nearest neighbours were the two accessions of R. totta. It was late flowering and possessed large seeds ($45 \mathrm{~g} / 1000$ seeds) in comparison with other members of this subset. This accession had only two flowers per inflorescence.

ㄹ. volubilis (Group 7)
The single representative (from China) of this species was distinguished by 1 ts trailing habit, reddish brown stems and dark red pods. It is well removed from any other individual. No collecting information is avallable for this accession.
R. Sublobata (Groups 20 and 21)

The 14 accessions of this species exhibited a fair degree of variation in flowering time and differed in the presence or absence of scent in the flower. These two characters were largely responsible for the variation exhibited on the minimum spanning tree. Other morphological characters varied only marginally.

Three groups can be distinguished on flowering time alone. The five accessions (Group 20) adjacent to R. totta in figure 2 are early-flowering accessions (approximately 140 days) while eight accessions (Group 21) adjacent to R . hirta are later flowering (approximately 178 days). The intermediate acession, CPI 60338 (Group 20) was the earliest flowering accession, 115 days.

All accessions are from east Africa with CPI 60338 being collected from the most northerly location. The remainder are from zambia, Tanzania, Zimbabwe and Malawi with one accession, CPI 52743, from Madagascar. Collecting data indicates that the species is adapted to lighter soils in semi-arid to sub-humid environments.
R. hirta (Group 18)

This species is represented by two accessions only. They are almost identiaal in every respect. Leaf, flower and seed size were extremely large, the largest in the collection for flower and seed characters. Both collections are from Zimbabwe at 1200 and 1500 mm in dry environments.
R. phaseoloides, R. phaseoloides.aff (Group 17)

These two accessions are both from Brazil. All plant parts were large with the exception of seed. The accessions are almost identical. There is no collecting information for these accessions.

R. pyramidalis (Group 17)

Although this species is represented by six accessions, there is almost no morphological variation represented. Information regarding the origins of these accessions is available for CPI 81388 and 90871. Both are from north-western Mexico. As with R. longeracemosa, the seed of this species contains narcotic hallucinogens (Grear 1978).
R. Caribaea, R. caribaea.aff CPI 52687 (Group 22)

The four acceqsions of this species are adjacent to R. totta or figure 2 and differ from that species in having shorter petiole hairs, poc colour, terminal leaflet shape and stem colour. Thê collections are all from South Africa from areas with annual rainfall between 700 and 900 mm . Soil textures at the sites of collection ranged from sand to clay loams.
R. velutina (Group 23)

The single accession of this species is well removed from any othe accession on the minimum spanning tree. It differed from other accession in having a grey-green foliage, grey stems, large deep yellow flowers an dark brown pods. Its habit was semi-erect. The orlgin of this accessio is lowland Kenya on a site with deep sands and 750 mm rainfall.

Collecting information for the Tanzanian material shows their origin as medium altitude (1500 m) with rainfall between 700 and 750 mm . Soil texture at the sites of collection where known was a clay loam.

R. balansae (Group 5)

This species is represented by only two accessions, one from Argentina; the other from Paraguay. From the minimum spanning tree, it is clear that they, differ significantly, especially in flowers per inflorescence; 21 for CPI 52129 and 94 for CPI 78485. The Argentine accession (78485) flowered earlier. It was collected from a sandy loam soil site; rainfall was 1100 mm .

R. burkartii (Groưp 5)

This accession is very similar to the previous species and differed primarily in floral characters such as keel length. There is no information on collecting site available.
R. reticulata, R. \&eticulata.aff (Group 5)

Both accessioths were collected from clay soil, high rainfall sites in Panama. Both are late flowering (>200 days) and have large plant parts in comparison with other members of this subset, eg. leaves and pods. These accessions are the extreme of this subset.
R. sp. (CPI 76213) (Group 5)

This accessibn was collected in Belize. Rainfall at the site of collection was 1450 mm . In comparison with most other members of this subset it has large seeds and leaves and most closely resembles R. diversifolia CPI 92648.
R. diversifolia (Groups 5, 7)

This species is representated by two accessions, one from Argentina (CPI 78463) and the other from Colombia (CPI 92698). The former was collected on a cley loam with 1170 mm and the latter from a clay soil site with 800 mm rainfall and an altitude of 1700 metres.

Although they are dissimilar in many attributes, CPI 92648 is the fourth nearest nelghbour of CPI 78463 in the nearest neighbour analysis. The attributes thoy differ in include maximum leaf length (72 mm for CPI 92648, 38 mm for OPI 78463). flowers per indlorescence (13 vs 3) and habit (erect/twining vs prostrate/trailing.)

Chrysoscias sp. (Ğroup 5)
This single facession difders from its nearest neighbour, R. senna CPI 52126, in mature and immature stem colour and petiole colour. It was collected from a 'black volcanic soil' in South Africa; rainfall at the collecting site wat 900 mm .
R. minima (Groups $1,2,8,11,13,14$)

This species dominates the collection in terms of numbers of representatives. Six varieties have been identified within the set. All of these are represented in subset II but only R. minima var. minima in subset III. In terms of morphology, there is considerable variation
R. rufescens (Paracalyx sp.) (Group 4)

The species is distinguished by expanded calyx lobes (longer than the corolla) and by having only one seed per pod. The accession was collected in Coimbatore, India.
R. verdcourtii (Group 3)

These large flowered accessions from east Africa are at one extreme of the subset. There is little variation within the collection of this species.

They are distinguished from other members of the subset by their viscid stems and pods, large flowers and habit (semi-erect with twining branches).
R. micrantha (Group 2)

This species is represented by six accessions, all from east Africa. They differ from R. minima in seed size and some floral characters but in other respects are very similar. Collecting information suggests they are adapted to light soils. Rainfall at the sites of collection ranged from 750 to 1125 mm .
R. candida (Group 2)

This single Angolan accession is similar to R. micrantha in almost all characters. The exceptions are the strongly aromatic pod and a semierect habit, with twining branches; the habit for R. micrantha is twining.
R. Senna (Groups 5 and 13)

There are five accessions of this species, four (Group 5) of which are almost identical. The fifth accession (Group 13) from Paraguay differs in flower and pod characteristics but agronomically they are all very similar. The origin of the other four accessions is Argentina.

CPI 52126 was collected from a 'salty soil' in Paraguay and was recorded as being.'aggressive'. CPI 78474, from Argentina was heavily grazed at the site of collection. Soil texture at the sites of collection, where known, was light and rainfall between 500 and 700 mm .
R. americana (Group 10)

This species is distinguished by its unifoliolate leaves. There is little difference between the accessions, both of which are from Mexico. Both accessions were collected from loamy soils, at 1.500 m altitude and 700 mm rainfall.
R. densiflora, R. densiflora.aff (Group 6)
R. densiflora is represented by four accessions with another, CPI 78173 , closely linked. The four accessions of R , diversiflora were collected in Tanzania and are almost identical. They differ from CPI 78173, from Botswana, in seed weight, days to flower and flower keel length. In most attributes, the Tanzanian accessions resemble R. minima var. tomentosa although they differ in habit.
between varietles but the degree of variation within varieties is inconsistent. The attributes used in the analysis to distinguish the varieties were of little or no agronomic value and included stem and foliage colour, bract colour and flower colour. There were difference between groups (and varieties) in pod viscidity and pod retention and within groups, In days to flower (see Appendix 3).
R. minima var. tomentosa (Group 8)

All 14 adcessions were collected within a small region of north Queensland with little variation evident. There is some variation in days to flower with Q22182 and Q22188 being very early.
R. minima var. eurycarpa (Group 9)

The accessions of this variety are Australian in origin, uniform (see figure 3) and distinguished by their petiole colour (green and very light green when mature) and the presence of viscid hairs on the pods. The variation withln the variety appears to be based on leaflet colour and shape but there does not appear to be any pattern between geography and this variation.
R. Minime var. nuda (Groups $1,2,11,13,14$)

This varlety is represented in four groups on the classification and four separate locations on the minimum spanning tree. The attributes which contribute most to this diversity are foliage colour, days tọ flower, leaflet size and shape and flower colour.

CPI 84163 and the three accessions of \underline{R}. schimperi are almost identical and all were collected in Tamil Nadu. India. Within this variety, CPI 84163 most closely resembles Q22204 and Q22216, both from Australia, and CPI 89220 from Mali. With the exception of CPI 89220; these are early flowering and all have small leaflets.

CPI 52702 and CPI 52711 are late flowering and differ from the majority of the Australian material in flower colour, leaflet shape and other minor châracters. Both are from Zimbabwe and are more similar to \mathcal{B}. minima var. millima and \underline{R}. minima var. prostrata than other accessions of this variety.

The third group is made up of three accessions from subtropical Australia and a fourth whose origin is unknown. This group is distinguished by its low, petiolule hair density.

The main group consists of 9 accessions, all from the Northert Territory or fibrthern Western Australia. They are similar to CPI $5270{ }^{\circ} 2$ and CPI 52711 In having large leaflets and being late flowering. They are distinguished from other accessions on foliage colour, habit and petiole colour. The habit of these accessions was always prostrate/trailing.
R. minima var. falcata (Group 13)

This Afrienan/Madagascan variety is represented by three accessions, CPI 52677B, 54703 and 60335. They are very similar to each other and differ from the other R. minima accessions in having viscid hairs on the pods (although some R. minima var. nuda and R. minima var. eurycarpa also have pods with viscid hairs), slightly larger leaves and a smallef calyx/keel ratio. CPI 60355 is earlier flowering than the other two accessions.
R. minima var. prostrata (Groups $1,2,3$)

All accessions of this variety were collected in southern Africa. Four accessions are loosely linked to, the \underline{R}. verdcourtii accessions and these are more closely linked to other R . minima varieties.

The four accessions placed near R. verdcourtii, CPI 35464, 52716, 52717 and 60626 all had large flowers (keel length and standard width) as did R. verdcourtii and possessed a semi-erect/twining habit. They varied considerably in days to flower and seed size.

The other accessions, CPI 52701, 52704 and 69501, had smaller flowers and a twining or trailing habit. Days to flower was again variable as was leaf size. CPI 52704 was more closely linked to R. schimperi accessions than to other R. minima accessions.

R. kilimandscharica (Group 8)

The single accession of this species was included $1 n$ both subsets II and III since it was one of only two African collections included in group 15 in the original classification.

In this subset it was placed with the R. minima var. tomentosa accessions but it differed from these in days to flower (much later for R. kilimandscharica), seed size and stem colour. As with the American R. minima, the pod colour was dark brown but it does differ from the American R. minima in leaflet shape. Flower colour for this accession was yelloworange whereas the colour of the American R. minima accessions was dark yellow.

SUBSET III (American R. minima) (Group 15)

This subset is made up entirely of R minima var minima with the exception of the one accession of k. kilimandscharica. The variation within the subset is minimal as can be seen from figure 1 where this group (Group 15) remained as one to the 23 group level. The group is characterised by having a leaflet shape of 'ovate tending to lanceolate', dark brown pods and dark yellow flowers (wings).

Resin gland density for the genus ranged from 0 to 18 per $1.5 \mathrm{~mm}^{2}$ on the upper surface of the leaves and from 0 to 57 per $1.5 \mathrm{~mm}^{2}$ on the lower surface. All R. sublobata accessions had few resin glands (< 9 per 1.5 mm^{2}) whilst R. balanse, R. burkartii, R. caribaea, R. densiflora, R. diversifolia, R. phaseoloides, R. senna and R. volubilis accessions had high resin gland densities (>16 per $1.5 \mathrm{~mm}^{2}$). Data was not obtained for accessions of R. hirta, R. velutina, R. usambarensis and one accession of R. schimperi because of the dense leaf pubescence on the under surface of the leaves. In all other species resin gland density was variable and did not appear to be related to either the geographic origin of accessions or to environmental factors such as latitude, altitude or mean annual rainfall at the site of collection.

DISCUSSION

Intuitive classification carried out during the period of data recording closely matched the results produced by the numerical analysis. This has added considerably to the confidence placed in the TAXON package techniques. The close correspondence between the minimum spanning trees and the classification can be seen in figures 2 and 3 . Only the group

labelled 17 in figure 2 is disjunct on the minimum spanning tree. $C P I$ 52682 has as its nearest neighbour R. sublobata CPI 77003 with the third, fourth and fifth nearest neighbours being R. pyramidalis accessions which corresponds to its placement in the classification. In figure 3, group 3 is split into two locations on the minimum spanning tree. In this case, neither CPI 15458 nor Q22203 have had any of the other members of group 3 included their five nearest neighbours. This suggests that these two accessions differ by some degree from the other members of the group and that the minimum spanning tree provides a more meaningful picture of the relationship of these accessions. Apart from these two cases, the two methods of analysis correspond closely.

Of the 200 species belonging to the genus, only 29 are represented in the collection. This is due in part to the methods of acquiring germplasm. Many accessions are the result of plant collecting missions to grassland/savanna regions of the tropics and this precludes the possibility of collecting those species whose distribution is limited to forest vegetation. This does not mean, however, that the collection contains all species with potential as forage.

The data set included few characters of agronomic importance. The characters recorded and used in the analysis were selected during the growing of the collection and measurements were takep of particular characters where variation in that character was apparent. Although floral characters were thought to be of limited use in discriminating taxa in this genus (Grear 1978), they did assist in discriminating taxa and ecotypes within the collection. Characters such as podrsize and colour, leaflet shape and colour and petiole hair colour and density were more important. Some species were characterised by possessing a character not found elsewhere in the collection. For example, R. americana was the only species not having a trifoliolate leaf; R. aurea was the only species to behave as an annual; R. rufescens had only one seed per pod.

Agronomic characters such as flowering time, habit and seed weight were frequently used to discriminate groups within a taxon, eg. R. minima var. nuda. Seed shattering was rapid in most accessions but some species such as R. aurea and R. pyramidalis did hold their seeds for a longer period. Even within species there was some variation in this character with some accessions of R . minima retaining their seeds longer than others. As all of these measurements were taken funder glasshouse conditions, there is some doubt that the variation in this character would sustain under field conditions. Certainly ratings of 3 or 4 would be needed to be of use in commercial seed production.

Growth habit within the collection was usually trailing or twining. Some accessions, such as R. usambarensis CPI 75422, had a semi-erect habit. Stolon development was limited to a few species; viz. R. aurea, ㅈ. volubilis and R. diversifolia.

Many accessions were sticky and others non-sticky but strongly aromatic. Particular attention at an early stage in field evaluation should be paid to palatability. If resin gland density is associated with palatability then the variation in this character provides opportunity to select material for low resin gland density. As this variation does not appear to be related to geographic or environmental origin, selection for low density should not be restricted to particular environments. Preliminary field experience would suggest that many fines of R. minima are not eaten while actively growing but may become acceptable, to cattle, with increasing maturity in autumn. This can be a most useful trait,
since it is over the autumn-winter that high quality (protein) forage is in shortest supply. Anderson and Naveh (1968) consider that although R. sennaarensis, (byn R. verdcourtii) is less palatable than Neonotonia wightil, the leaves are readily eaten by cattle. It is abundant in Masailand, where it survives well under low rainfall and can be found on the more fertile soils in the driest areas. Crawford and Prins (1979) also reported $\mathbb{R}^{\text {a }}$ sublobata to be freely grazed in Zambia at the break of the season.

Morphological characters dominated the analysis; agronomic characters such as flowering time were most significant in distinguishing between 'types' below the species level.

Figure 3 clearly shows the degree of variation within and between varieties of \underline{R} : minima. The extent of this variation led verdcourt (1971a) to comment on the difficulty of dividing the R. minima complex into sub-speciflc taxa. There does appear to be a pattern in the distribution of varieties of this species within Australia. All collections of R. Minima from the Northern Territory were identified as R. minima var. nuda as were two accessions from south-east Queensland and northern New South Wales. All R. minima var. tomentosa were from a small region in north Queensland. R. minima var. eurycarpa, collected from Queensland, accounted for the majority of the remaining Australian collections.

Because of the presence of native R. minima on clay soils in northern Australia and elfewhere, there has been interest in evaluating accessions of this species, on similar soils. An analysis of the collecting data shows that few other species have been collected from clay soils. Several accessions of \underline{R}. minima are from clay or clay loams but no other species are predominantly from these soils. There are individual accessions of other species, such as R. senna, R. densiflora and R. Caribaea collected from heavy soils. It is worth noting that a large number of R . minima accessions are from sands and sandy loams emphasising that the species should not be thơught of as a 'clay soil' species exclusively.

The close proximity of other species to \underline{R}. minima in figure 3 indicates that these are only marginally distinct from that species. species such as E. micrantha, R. senna, R. Schimperi should be included in any evaluation work with R. minima. In addition, care should be taken to include accessions which cover the range of variation of particular species or have originated in suitable environments. This is especially important in selecting accessions from the large and variable ㅈ. minima collection.

Despite the large number of collections of \underline{R}. minima from the Americas, little morphological or agronomic variation was evident, suggesting that \mathbb{R}. minima could be a recent introduction into that region, a view supported by both Verdcourt (1971b) and Grear (1978), the latter considering R. Minima to be an early weedy introduction into the New World. The American collection, which spanned a latitudinal range from Argentina to Mexico, exhibited less variation than any one Australian variety. Consequently, this classification offers no help in defining morphologic/agronomic groups within the American R. minima collection and selection of accessions for evaluation studies can only be based on environmental dath from the site of collection.

ACKNOWLEDGEMENTS

His fellow authors wish to acknowledge the major contribution made to this study by the late W.A.T. Harding. The thorough, conscientious manner in which data was collected and maintained made completion of the study following his unfortunate and unexpected death much easier than it otherwise might have been. The technical assistance of M.R. Meier and Miss F.T. Smith is also acknowledged.

REFERENCES

Anderson, G.D. and Naveh, Z. (1968). Promising pasture plants for Northern Tanzania. V. Overall comparisons of promising plants. East African Agricultural and Forestry Journal 34: 84-105.
Bishop, H.G.. Pengelly, B.C. and Ludke, D.H. (1988). Glassification and description of a collection of the legume genus Aeschynomene Tropical Grasslands 22: 160-175.
Bowen, G.D. (1956). Nodulation of legumes indigenous to Queensland. Queensland Journal of Agricultural Science 13: 47-60.
Burt, R.L., Edye, L.A., Williams, W.T., Grof, B., and Nicholson, C.H.L. (1971). Numerical analysis of variation patterns in the genus Stylosanthes as an aid to plant introduction and assessment. Australian Journal of Agricultural Research 22: 737-57.
Crauford, R.O. and Prins, W.H. (1979). Munkolo (Rhynchosia sublobata), a promising pasture legume in Zambia. Tropical Grasslands 13: 45-52.
Gramshaw, D., Pengelly, B.C., Muller, F.W., Harding, the late W.A.T. and Williams, R.J. (1987). Classification of a collection of the legume Alysicarpus using morphological and preliminary agronomic attributes. Australian Journal of Agricultural Research 38: 355-72.
Grear, J.W. (1978). A revision of the New World Species of Rhynchosia (Leguminosae-Faboideae). Memoirs of the New York Botanical Garden 31(1): 1-156.
Ross, D. (1982). 'Taxon User's Manual', CSIRO Division of Computing Research CSIRONET Manual No. 6.
Royal Horticultural Society (1966). Royal Horticulturel Society colour chart. R.H.S. London.
Verdcourt, B (1971a). Rhynchosia. In 'Flora of Tropícal East Africa'. 4(2). (Eds E. Milne-Redhead and R.M. Polhill). pp. 711-761. Crown Agents: London.
Verdcourt, B. (1971b). Studies in the Leguminosae - papilionoideae for the "Flora of Tropical East Africa - V". Kew Bulletin 25: 65-169.

APPENDIX 1

Features Recorded for Classification of the Rhynchosia Collection

A. Qualitative Characters

B. Ordered Multistate

1. Petiole halr length, if present (1-5); if absent *
2. very, very short hairs $\quad(0-0.25 \mathrm{~mm})$ approximately
3. very sfiort hairs $\quad(0.25-0.5 \mathrm{~mm})$ approximately
4. short liairs, $\quad(0.5-0.75 \mathrm{~mm})$ approximately
5. short to medium $\quad(0.75-1 \mathrm{~mm})$ approximately
6. medium
(1 mm) approximately
7. Pod retention (1-4)
8. pods sliatter very quickly
9. pods dôn't shatter so readily
10. pods hild well (but still shatter)
11. pods do not shatter
12. Stripe dentity of flower (anterior)
13. absent
14. very slight
15. slight
16. moderale
17. strong
18. very strong (almost complete cover)
19. Stripe density of flower (posterior)
states as $\ln 3$. above.
C. Numeric
20. length of terminal leaflet (m) (max. expanded)
21. width of terminal leaflet (mm) (max. expanded)
22. days to flowering from planting (except where early flowering was only sporadic)
23. floret numbers per inflorescence (maximum observed)
24. keel lengthi
25. standard width
26. calyx/keel ratio
27. pod length
28. pod width
29. seed weight (g per 1000)
D. Disordered Multistates
30. growth habjt (8 types)
31. stem coloufs - immature (20)
32. stem colours - mature (13)
33. foliage colour (3)
34. leaflet shape (of the terminal leaflet only) (19)
35. petiolule dolour (12)
36. petiolule liair density (3)
37. Elower colour (wings) (19),)) both hue and depth of
38. flower colour (standard) (19)) colour recognised
39. stripe colour (9)
40. bract cmlour (10)
41. pod colour (6)

Disordered Multistate Codes

1. Growth Habit
2. twining
3. trailing afd twining
4. trailing afid weakly twining
5. erect with twining branches
6. semi-erect with twining branches
7. semi-erect with weakly twining branches
8. semi-erect with trailing branches
9. prostrate/trailing
10. Stem Colours Immature
11. gpeen
12. light green
13. brown
. purplish brown
reddish brown
light reddish brown
greyish green
green with brown tinge
green with brown flush
green with light brown tinge
green with red tinge
green with red flush
green with reddish brown tinge
green with reddish brown flush
green with brown tinge then green
green with brown flush then green
green with reddish brown tinge then reddish brown green with reddish brown flush then reddish brown red then brown
purplish brown then green with reddish brown flush
green with reddish brown flush sometimes
green with brown flush sometimes
green with reddish/purple flush
green with red spot at back of leaflets
14. Stem Colours Mature
15. green
16. brown
17. light brown
18. purplish brown
19. reddish brown
20. green with brown tinge
21. green with brown flush
22. green with red tinge
23. green with red flush
24. green with reddish brown tinge
25. green with reddish brown flush
26. grey
27. brown with lighten markings

1, 11. green uith reddish brown flush sometimes
4. Foliage Colour

1. dark green
2. dark greyish green
3. dark yellowish green
4. Leaflet Shape
5. ovate
6. deltoid
7. rhomboid
8. elliptic
9. obovate
10. orbicular
11. lanceolate
12. oblong
13. ovate tending to elliptic
14. ovate tending to deltoid
15. ovate tending to phomboid
16. ovate tending to lanceolate
17. rhomboid tending to obovate
18. rhomboid tending to opbicular
19. rhomboid tending to ovate
20. orbicular tending to ovate
21. obovate tending to orbicular
22. obovate tending to rhomboid
23. deltoid tending to ovate

Petiolule Colour

1. green
2. dark green
3. light green
4. greyish green
5. green then light green when mature
6. dark purple
7. green with red finge
8. green with red flush
9. Iight bpown to breen when mature
reddish purple then brown to green when mature
10. green with red band at base sometimes

1, 7. green with red tinge sometimes
7. Petiolule Hair Densíty

1. 1 dense
2. sparse
3. almost hairless or glabrous

8\&9. Flmwer Colours (Royal Horticultural Society 1966)

- for both wings and standard
- A B C indicates decreasing depth of colour

10. Stripe Colours
11. absent
12. red
13. reddish purple
14. purple
15. orangey red
16. dark red
17. reddish brown
18. brown
19. pink
20. Bract Colours
```
1. green
2. green with red Kinge
    3. green with reddlsh purple flush
    4. green with purple flush
    5. green with red Elush
    6. green with purple tinge
7. Brown
8. green with browh flush
9. red
10. green with browh tinge
```

12. Pod Colours
13. dark brown
14. brown
15. light brown
16. dark red
17. light pinkish bfown with dark brown reticulation
18. dark grey
19. light brown with brown mottling

Project numbers species and group numbers of the Rhynchosis collection arranged by accession numbers

Access.* No.	$\begin{aligned} & \text { Project } \\ & \text { Ho. } \end{aligned}$	Species (After L. Pediey)	Group** Ho.	Acces5. No.	Project No.	$\begin{aligned} & \text { Species } \\ & \text { (After L. Pedley) } \end{aligned}$	Group No.	Access.* Ho.	$\begin{gathered} \text { Project } \\ \text { No. } \end{gathered}$	$\begin{gathered} \text { Species } \\ \text { (AfterL. Zedley) } \end{gathered}$	Group No.
15458	105	R. minima	3 u	51370	202	R, minima var minima	15%	55793	21	R. reticulata aff,	5
17838	193	R. kilamandsharica	15a	51419	203	R. micrantha	2a	55795	22	R. reticulata	56
25449	43	R. schimperi	23a	51588	118	R. minima var minima	15 r	55796	320	Eriosema edule	19 c
29081	5	Eriosema edule	19a	52126	204	R. senna var texana	13b	56379	,	Eriosema edule	19 b
10232	454	R-methinut	21a	52127	8	Eriosema edule	19b	58397	41	R. phaseoloides aft.	17a
32720	194	R. minima var nuda	$2{ }^{2} \times$	527290	$\therefore 86$			5854420	207.	R. minima wazr minimana:	15r....
32963	195	R. minima var minima	$2=$	52677	78	R. caribaea	22a	58642	189	R. minima var miniza	15 r
33827	196	R. minima var minima	$2=$	52677	132	R. minioa var falcata	13 s	60323	208	R, micrentha aff.	2
33828	15	R. americana	10a	52679	35	Chrysoscias sp	13	60329	236	R. caribaea	22a
33976	239	R. minima var minima	15 r	52682	42	R. luteola var verdickii	17a	60331	71	R. totea	5 a
33999	240	R. minima var minima	2 r	52684	61	R. sublobata aff.	21 b	60332	72	R. totta	22 b
34131	15	R. densiflora esp stuh.	6 B	52687	316	R, caribaea aff.	22a	60335	119	R. minina var falcata	13
34132	197	R. micrantha	2a	52690	102	R. densiflora ssp stuh,	6 a	60336	113	R. minisa	19
34133	186	R. verdcourtii	3 a	52691	103	R. densiflora ssp stuh.	6a	60337	76	R. tetta	22 b
34875	243	R. minima var minima	15 r	52692	106	R. densiflora ssp stuh.	6	60338	67	R. sublobata	20 c
35464	160	R. minima var prostrata	3 n	52696	317	R. hirta		60339	82	R, totta	22b
35794	40	R. phaseoloides	17a	52697	38	R. hirta	18a	60341	73	R. totta	5a
36145	53	R. catibaea	22a	52700	133	R. minima var minima	19	60342	77	R. totta	22b
36250	95	R. minima var minima	155	52701	187	R. minima var prostrata	d	60346	34	R. velutina	23 a
36251	2	Eriosema edule	19b	52702	109	R. minima var nuda	1 d	60626	161	R. minica var prostrata	3 n
36542	46	R. pyramidalis	17 a	52703	110	R. minima var falcata	135	61164	190	R. minima var minima	2 r
36544	47	R. pyramidalis	17 a	52704	107	R. minima var prostrate	2m	61203	97	R, minima var minima	15 r
36696	114	R. minima var minima	$15 r$	52705	149	R. minima var minima	19	61203	209	R. minima var minira	15 r
36696	143	R, winima var minima	155	52706	111	R. minima	19	63458	136	R, minima var minima	15 r
36696	198	R. minima var minima	15	52707	92	R. schimperi	2 b	65480	62	R. sublobata	216
36697	179	R. Einima var minima	15	52708	93	R, schimperi	2 b	65854	37	R. hirta	18a
37155	144	R. minima var minima	15 r	52709	94	R, schimperi	2 b	67324	282	R. totra var fenchelii	22b
37159	199	R. minima var minima	15 r	52710	112	R. minima	1 q	67641	44	R. schimperi :	23a
37221	145	R. minima var minima	15 r	52710	A 108	R. minima var minima	19	68896	180	R. minima var minima	15 r
37324	146	R. minina var minima	15	52710	B 188	R. minima var minima	29	68897	153	R, minima var minima	15 r
37333	245	R. minima var minima	157	52711	134	R. minima var nuda	1 d	69078	162	R. minina vat minima	15 r
37394 37306	147	R. minima var minima	15 r	52712	205	R. minima var nuda	2	69501	154	R. minima var prostrata	19
37396 37410	127	R. Minima var minima	155	52713	253	R. micrantha	2 a	69502	63	R. sublabata	216
37410	241	R. Einina var minima	15 r	52714	150	R. candida	2 a	70355	210	R. mirina var minima	15 r
37595	246	R. minima var minima	15 r	52716	284	R. minima var prostrata	3 n	70356	168	R. minima var minima	15 r
37617	247	R. ninina var minima	25	52717	252	R. minima var prostrata	30	70357	169	R, minisa var minima	15 r
37634	128	R. minima var minima	15 r	52718	135	R. micrantha	2 a	71865	96	R, minima var minima	15 r
37647	7	Eriosema ecule	19 b	52721	33	R. rufescens (Paracalyx sp)) 4 a	72979	83	R. totta	225
33068	48	R, pyramidalis	17d	52724	151	R. verdcourtii	3 a	73057	64	R. sublobata	20a
40225	242	R. minima var minima	15 r	52726	152	R. verdcourtii	3 a	73058	65	R. sublobata	20a
40226	250	R. minima var minima	25	52727	57	R. sublobata	216	75422	54	R, usa=barensis var obt.	23
40227	251	R. minina var minima	15 r	52728	55	R. sublobata	20a	76209	267	R, longeracemosa	16a
43784	148	R R. minima var minima	29	52729	59	R, sublobata	215	76210	323	R. longeracemosa	16 a
43785 49792	60 115	R. sublobsta	218	52731	58	R. sublobata	21	76213	268	R. sp.	5
49792	115 R	R. minima ${ }^{\text {R }}$, minima var minima	155	. 52738	79	R. totta	22 b	76214	324	A. loneteracemosa	16 a
49808 50267	129 R	R. minima var minima	15r	52739	$\begin{array}{r}60 \\ \hline \text { - } 81\end{array}$	R. Lotta	22 b	76215	325	R. longeracemosa	16 a
50267 50758	2051	R, minima var minima	159 17 a	52750 52742	$\cdots{ }^{31}$	R-tatta $R, t o t t a$	$22 b$ $22 b$. -76218 $\cdots 76219$	279 170	R.. longeracemosa R.Mminina var.minima	16 a 15 r
50977	201 R	R. minima var nuda	13 c	52743	56	R. totta	22ba	76220	170	R. minina varminima	155 150
51043	131 R	R. minima var minima	15 r	55792	206	R. minima var minima	155	76221	211	R, minima var minima	15 r

Access.* No.	Project No.	Species (After t. Pedley)	Group No.	Access. No.	$\begin{aligned} & \text { Project } \\ & \text { No. } \end{aligned}$	Species (After L. Pedley)	$\begin{gathered} \text { Group } \\ \text { No. } \end{gathered}$	Access.* No.	Project No.	Specier (After L. Pedley)	Group No.
76223	99	R. minima vat minima	15 r	85831	219	R. Einime vat ainima	15 r	Q10122	257	R. minima var minima	
76224	100	R. minima vas minima	15 \%	86151	125	R. cinima vat ainima	15 r	Q10629 (14)	26	R. minima aff.	81
76225	101	R. minima var minima	15 r	87534	13	R. longeracenosa	16 a	Q17408	126	R. minima var to	81 $20 a$
76226	212	R. minima var minima	15 r	87543	19	R. longeracemosa	16 a	Q17446	310 289	R. Sublobata ${ }^{\text {R }}$, mar tmentosa	81
76227	120	R. minima var minima	15 r	87555	220	R. Ginima var ainima	15 r	Q22181 (N 2182 (N 27)) 289	R. minina var tomentosa	81
76228	213	R. minima vat minima	155	87853	10	R. longeracemosa,	16 a	Q22182((227)) 291	R. minima var tonentosa	81
76220	171	R. minima var minima	155	89220 89221	104 165	R. Einima vat nuda	25 50	Q22183 (N28)) 296	R. minima var tomentosa	81
76230	191	R. minima var minima	155	88221	165 285	R. Einima var ninima	50 152	Q22185(N34)) 296	R. minima var tomentosa	81
76231	214	R. minima var minima	155	89294 89309	285 30	R. Einima var minima	157	Q22185 (N35)) 298	R. minima var tomentosa	81
76232	215	R. minima vae minima	15 t	89309	30 26	R. (Nomismia) aurea	10 a	Q22187 (136)	299	R. minima var tomentosa	81
76233	121	R. minima var minima	2 F	90477	26 75	R. americana	21.	Q22188 (N 37)) 300	R. mínima var tomentosa	81
76235	181	R. minima vat minima	15 r	90761	$\begin{array}{r}75 \\ \hline\end{array}$	R. spinima var minima	15 r	Q22189 (N38)	301	R. minima var tomentosa	81
78236	1635	2. mintae vacminizar	155	90935	221	R. Einima var minima	$\xrightarrow{155}$	Q22190 (m 40)	303\%	R. EASra var emma	81
77003	65	R. sublobata	21b	90855	224	P. ainima var minima	155	Q22191(N41)	304	R. - ininima var tomentosa	81
77004	74	R. totta	22 b	90860 A	222	R. minima var minima	15 r	Q22191(N4.)) 304	R . minima var tomentosa	81
78172	84	R. totta	22 b	90860 B	86	R. minima var minima	15 r	Q22192 (N42)) 305	R. minima var comentosa	81
78173	237	R. densiflora aff.	6 b	90871	51	R. pyramidalis	17 a	Q22193(N43)) 306	R. Minima var tomentosa R. minima var ainima	
78463	311	R. diversifolia var prost.	7 a	90884	223	R. minima var minima	15 x	Q22194(145)) 308	R. minima var ainima	
78466	182	R. minima var minima	$15 r$	90902	20	Eziosema edule	19 a	Q22195(N11)) 142	R. minima var nuda	
78468	, 3	Eriosema edule	19a	90918	225	R. minime var minima	15 r	Q22196(N10)) 166	R. minima var nuda	
78470	164	R. senna	5 a	91083	226	R. minime var minima	2	Q22197 (112)) 167	R. minima var nuda	
78473	216	R. minima var nuda	15 r	91091	227	R. minima var minima	15 t	Q22198(N19)) 275	R. minima var? nuda	11a
76474	10	R. senna	5 a	91104	229	R. minima var minima	15 r	Q22199 (N20)) 276	R. minima vart nuda	11 a
78475	269	R. balansae var psilantha	5 a	91137	228	R. -ifnima vat minima	15 r	Q22200 (N21))	inima var nuda	11 a
78476	6	Eriosema edule	19a	91159	230	R. minima var minima	15 r	Q22201(N22)) 278	R. minima var nuda	11 a
79061	155	R. senna	5 a	91170	178	R. Linima var minima	15 r	Q22202 (N14)) 270	R. minima v	
79069	29	R. aurea	12a	91440	231	R. ninima var minima	15 r	Q22203 (N17)) 273	R. minima ver nud	
79668	172	R. minima var minima	15 r	91955	185	R. minima var minima	15 r	Q22204 (N13)) 235	R. minima var eurycarpo	
81305	24	R. burkartii	5 a	92334	39	R. volubilis	7 a	Q22205 (N16)) 272	R. minima var nuda	9 b
81380	173	R. minima var minima	15 r	92593	255	R. senna	5 a	Q22206 (N15)) 271	R. minima var eurycarpa	91
$813 n 1$	174	R. minima var minima	15%	92648	27	R. diversifolia	5 b	Q22207 (N9)	159	R. minima var eurycarpa	9 k
81382	122	R. minima vaz minima	15 r	92943	312	R. minima var minime	15 r	Q22208 (N 29)) 292	R. minima var eurycarpa	9 g
81334	175	R. minima var minima	15 r	93010	313	R. minima vat minima	15 T	Q22209	177	R. minima var minima	9 h
81305	116	F., minima	15 r	93017	314	Eriosena edule	196	Q22210(N6)	192	R. minima var minime	9 h
81385	155	2. minima va- minima	15 r	93022	315	Eriosema edule	19 b	Q22211(17)) 238	R. minine var eurycarpa	9 h
81387	175	P. Einina va= ginina	15 r	CQ717	258	R. minima var minima	155	Q22212(N32)) 295	R. rinima var eurycarpa	${ }^{98} 8$
81383	50	R. pytamida:is	17 a	CQ795	138	R. Dinima var eurycarpa	98	Q22213 (NB)	232	R. minima var nuca	13 c
81655	123	R. minina vat minisa	2 p	CQ998	4	Eriosema edule	19 a	Q22214(N44)) 307	R. minima var nuda	145
81728	137	R. minima var minima	15 r	CQ1372	264	R. ginima vat eurycarpa	91	Q22215 (N31)) 294	R. minima var nuda	137
81729	254	R. minima var minina	15 r	P7102	140	R. minima var minima	15 t	Q22216(N25)) 288	R. cinima var? nuds	2 f
82308	217	R. minina var nimima	15 r	87683	158	R. minima vat nuda	13 c	Q22217	90	R. minima var minima	2 F
32300	91	R. minima var minima	15 r	Q9350	87	R. minima vat minima	15 F	Q22309	253	R. minina var minima	156
82310	157	R. minima var minima	15 r	Q9851	139	R. minima var minima	15 t	Q22311	65	R. totta	22 b
82311	183	R. minima vae minima	15 r	Q10038	89	R, minima vat minima	15 r	Q22312(N23)) 286	R. minima vat nuda	13 c
84163	124	R. minima var nuda	2 e	Q10041	88	R. ninima vat minima	15 r	Q22313(N24)) 287	R. minima var eurycatpa	45
84522	218	R. minima var mitima	15 r	Q10074	52	R. Oblatifolieta	5 a	TPI 32(N1)	259	R. minima var eurycarpa	9 w
84953	134	R. minima var minima	15 r	Q10121	256	R. minina ver minima	15 r	TPI 49(N2)	14	R. minima var eurycarpa	98
								CQ2796(N5)	141	R. minima var nuda	11

Access lio. *	Proj. No.	Species (After. L. Pedley)	ORIGIN Country, Province	Lat.	$\underset{(\mathrm{m})}{\text { Alt. }}$	$\begin{aligned} & \text { Rain } \\ & \text { fall } \end{aligned}$	Soil Text $+$		Re act. F		Resin Glands ***	$\begin{aligned} & \text { Viscid } \\ & \text { Stem } \end{aligned}$	Fiscid pod \forall	Pod Aroma		$\begin{gathered} \text { Seed } \\ \mathrm{Ht} \\ \text { Hi** } \end{gathered}$	Day to Elower
			GROUP 1 (10 Members)														
52700	133	R. minima var minima	Zimbabwe, Wankie	18.50 S	1060	650				1	21	0	0	V. slight	1	13.28	128
52705	149	R. minima var minima	Zimbabwe, Urungwe	16.30 s	600	600				1		0	0	V. slight	1	13.49	144
52706	111	R. minima	Zambia, Eastern	13.47 S	630	750	S		A	1	9	0	0	V. slight	1	13.51	164
52710	112	R. minima var minima	Zambia, Eastern	13.005			c			1	7	0	0	V. slight	1	14.32	143
52710 A	A 108	R. minima	Zambia, Eastern	13.00 S			c			1	13	0	0	v. slight	1	13.66	155
60336	113	R. minima	Botswana, Central	21.345.	909	450	L		c	1	18	0	0	7. slight	1	13.76	122
52702	109	R. minima var nuda	Zimbabwe, Umtali	19.25 S	900	600	I			1	12	0	0	V. slight	1	11.38	143
52711	134	R. घinima var nuda	Zimbabwe, Bikita	20.04 S	1200	675	M			1	12	0	0	V. slight	1	17.86	136
69501	154	R. minima var prostrata	Zimbabwe, Hyamandhlovu	19.31 S						,	9	0	0	V. slight	1	12.03	122
52701	187	R. minima var prostrata	2 mbabwe , Harare	17.40 S						1	7	0	-	V. slight	2	14.59	81

A group of fine to medium sized, twining vines, almost glabrous, flowering in autumn, winter and spring. Seeds are bean shaped, beige to grey with lighter and darker marking 187 is a fine, small, twining vine, small leaved and glabrous. Flowers autumn and spring. Seeds bean shaped, dark brown to black with some lighter markings.

32720	194	R. minima var nuda	Tanzania, Dodoma	6.23 s						1	11	0	0	Lightly	1	9.68	64
32963	195	R. minima var minima	Colombia, Valle	3.33 N	1000		c			1	19	0	0	Yes	1	11.69	50
33827	196	R. ninima var minima	Mexico, Vera Cruz							1	18	0	0	Yes	1	14.31	43
33999	240	R. minima var minima	Costa Rica, Puntarenas	9.06 N	200					1	9	0	0	Tes	1	10.31	50
34132	197	R. micrantha	Tanzania, Arusha	4.005						1	6	0	0	Yes	1	8.42	73
37617	247	R. minima var minima	Bolivia, Santa Cruz	17.42 S	750					1	15	0	0	Yes	1	12.86	144
40226	250	R. minima var minima	Bolivia, Santa Cruz	17.20S	400					1	54	0	0	Yes.	1	10.16	145
43784	148	R. minima var minima	Zambia, Southern							1	17	0	0	V. slight	1	16.72	148
Q22217	90	R. चinima var minima	Unknown							1	22	0	0	Yes	1	18.62	52
51419	203	R, micrantha	Tanzania, Der-es-Salaam							1	8	0	0	Lightly	1	9.04	50
52704	107	R. minima yar prostrata	Zimbabwe, Nyamandhlovu	20.005	1300	600	c		c	3	2	0	0	Lightly	1.	11.29	150
52707	92	R. schimperi	India, Tamil Nadu	10.59N	360	600	L		B	3	6	0	0	Lightly	1	23.89	51
52708	93	R. schimperi	India, Tamil Nadu	11.00 N	450	600	0			,	13	0	0	Lightly	-1	21.34	51
52709	94	R. schimperi	India, Tanil Nadu	0.00N	360	600				3	7	0	0	Lightly	1	18.61	51
52710 B	B 188	R. minima var minima	Zambia, Eastern	13:00s						1	9	0	0	V. Elight	1	14.99	162
52712	205	R. minima var nuda	Tanzania, Morogoro	7.005	500	800				1	10	0	0	Lightly	1	9.32	43
52713	283	R. micrantha	Tanzania, Mara	2.235	1500	750	s			1	29	0	0	Lightly	1	8.74	71
52714	150	R. candida	Angola, Benguela	12.275	13					5	30	0	0	Strongly	1	6.73	73
S27.18.	128.	R. miemantha \quad,	manzanim, manogaro	. 6.485	500	800.	I			1	15	0	0	Yes	1.	7.46	71
60323	208	R. micrantha aff.	Kenya, Coast	3.375	45	1125	s		c	1	16 *	0	0	Tes	1	$\cdots 7.67$	80
61164	190	R. minima var minima	Venezuela							1	6	0	0	Yes	1	11.20	71
81655	123	R. ninima var minima	Unknown							1	41	0	0	No	1	23.26	51
89220	104	R. minima var minima	Mali, Niono	14.18M			c		c	1	2	0	0	No	1	13.81	129
91083	226	R. minima var minima	Mexico, Sinaloa	24.20:4	500	1000	L	6.0	A	1	26	0	0	Tes	3	14.83	82
Q22216	288	R. ginima var nuda	Aust., Rockhampton, Q	23.20 S					D	3	14	0	0	V. slight	1	11.08	49
84163	124	R. Einima vas nuda	India, Tamil Nadu	17.364	10	900				3	1	0	0	Yes	1	15.18	46
76233	121	R. ainima var minima	Mexico, Campeche							1	25	0	0	Yes	1	15.04	66

A rather variable group of mostly fine, tyining, pubescent vines with both early and later flowering types. Many flower throughout the year but. ane only in auturn, winter and spring. Seeds amall.

* Accession No. Unless otherwise indicated is CPI No. See Appendix 1 for keys ** Lower leaf surface density, per 1.5 m \boldsymbol{m}^{2}
*** Seed fit $=1000$ grain weight in grams

Access Proj, \quad Species,
No. \quad No. (After L. Ped

[^0]

| | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 26 | 0 | 0 | Strong17 | 2 | 19.54 | 184 |
| 5 | 25 | 0 | 0 | Yes | 2 | 18.18 | 0 |
| 5 | 24 | 0 | 0 | Strongly | 2 | 13.52 | 116 |
| 5 | 14 | 0 | 0 | Yes | 2 | 19.94 | 87 |
| 3 | 18 | 0 | 0 | Yes, | 2 | 12.31 | 121 |
| 5 | 7 | 1 | 1 | Strongly | 2 | 11.54 | 66 |
| 5 | 8 | 1 | 1 | Strong17 | 2 | 12.49 | 78 |
| 5 | 13 | 1 | 1 | Strongly | 2 | 15.39 | 66 |

A group of medium sized semi-erect later twining plants with small pubescent leaves some sticky and highly aromatic. 252 has stems glabrous, Flowering throughout the jear but pod set often sparse. Seeds bean shaped grey to dark grey with lighter and darker marking.

GROUP 4 (1 Member)
52721 33 R. rufescens (Paracalyx sp) India, Coimbatore $11.00 \mathrm{~N} \quad 400 \quad 750 \quad \mathrm{c}$
The one member of this group is a small semi-erect twining plant, small leaved, pubescent and very sticky. Seeds rounded, o shaped with aril, uniseeded pods. The one member of this group is a small semi-erect twining plant. smal
It flowers throughout the year. Probably belongs to genus paracalyx.

GROUP 5 (16 Members)

52129	16	R. balansae var psilantha	Paraguay							4	37	0	0	Tes	1	15.44	123
55793	21	R. reticulata aff.	Panama, cocle	8.27 N	100	2500	c			1	34	0	0	Ies	1	13.91	207
55795	22	R. reticulata	Panama, Herrera	7.54 N	320	1900	C			1	43	0	0	Yes	1	19.32	211
60331	71	R. totta	Mozambique, Mavalane	26.00 S	30	700	1		B	1	13	0	0	Yes	1	16.36	81
60341	73	R. totta	Sth Aftica, Transval	25.305	76	550	7		B	1	13	0	0	Yes	2	18.88	91
78470	164	R. senna	Argentina, Tucuman	$26.06 s$	1000	700	Y	8.0	c	1	32	0	0	จ. 1ightly		15.34	94
78474	18	R. senna	Argentina, Jujuy	23.57 S	2100	500	7	7.8	c	1	27	0	0	7. 1ightly	2	12.02	57
78475	269	R. balansae var psilanch	Argentina, Corrientas	28.00 S	90	1100	I	6.6	A	4	24	0	0	Yes	1	11.69	81
79061	155	R. senna	Unknown							1	51	0	0	จ. 1ightly	2	14.65	87
81305	24	R. butkartii	Argentina, Salta							4.	40	0	0	Yes	1	16.77	115
89221	165	R. ginima var minina	Mali, Niono	14.188						1	10	0	0	V. slight	1	19.30	128
92593	255	R. senna	Unknown							1	36	0	0	V. slight	1	15.17	80
92648	27	R. diversifolia	Colombis, Valle	3.33N	1700	800		8.5	c	4	45	0	0	Yes	1	16.41	81
Q10629	261	R. minima aff.	Aust., Collinsville, Q	20.40 S						6	6	0	1		1	+	44
Q10074	52	R. oblatifoliata	Ethiopia, Addis Ababa.	9.03N						8	2	0	0	Lightly	3	44.98	185
'76213	268	R., 5 . ${ }^{\text {a }}$,	Pelize	20.5014	30	2450				1	21	0	0	-	2	22.28	. 127

A variable group from fine twining pubescent vines to more robust larger leaved types with hairy leaves and stems (21 and 22) mostly flowering and seeding throughout the year but sone autuan winter flowering (21 and 22). Seeds nostly 0 shaped of variable colours mostly b=owns.

GROUP 6 (5 Menbers)

Smali to medium sized, pubescent, trailing and twining plants with small to medium sized leaves. Elowered late in autumn and winter with 237 flowering in surier. Seed set in 237 poor. Seed varied from similar shaped, grey to greyish brown (11) through bean shaped very light beige to kidney shaped, brown with dark merking and green aril (237).

Access No.	Proj. No.	Species (After L. Pedley)	ORIGIN Country, Province	Lat.	A1t. (a)	$\begin{aligned} & \text { Rain } \\ & \text { fall } \end{aligned}$	Soil Text	ph	Re act. 00	Grow Hab. 1	Resin Glands **	Viscid Stem \downarrow	Viscid Pod \uparrow	Pod Aroma	Pod Retr 1	$\begin{gathered} \text { Seed } \\ \text { Ht } \end{gathered}$	Day to Flower

 9233439 R. volubilis China, Kwangsi
R. Volubilis is a medium sized, twining trailing, hairy vine, flowering in autumn or late spring. Seeds rounded black and shiny.

GROUP 8 (15 Members)

Q17408	125	R. minima	var tomentosa	Australia, Parada, Q	17.08s	485	814	1	21	0	0	Tes	1	10.28	141
Q22181	289	R. minima	var tomentosa	Australia, Mt Garnet, Q	Q 18.115	649	722	1	22	0	0	Yes	1	11.88	116
Q22182	290	R. minima	var tomentosa	Australia, Mareeba, Q	16.455	335	928	1	9	0	0	Tes	1	9.55	58
Q22183	291	R. minima	var tomentosa	Aust., Irvinebank, Q	17.25 s	755	839	1	17	0	0	Tes	1	10.93	115
Q22184	296	R. minima	var tomentosa	Australia, The Lynd, Q	18.545			1	34	0	0	. Yes	1	12.80	106
Q22185	297	R. minima	vat tomentosa	Aust., Mt Surprise, Q	18.225	453	799	1	14	0	0	Yes	1	12.08	123
Q22186	298	R. ninima	var tomentosa	Australia, Archer Ck, Q	Q 17.39 S			1	26	0	0	Tes	1	14.49	112
Q22187	299	R. minima	var tomentosa	Aust., Tinaroo Ck, Q	17.05 S	714	1260	1	22	0	0	Yes	1	9.54	126
Q22138	300	R. minima	var tomentosa	Austrelia, Mareeba, Q	17.06 S	335	928	1	23	0	0	Yes	1	11.10	66
Q22189	301	R. minima	var tomentosa	Australia, Chillagoe, Q	Q 17.085			1	28	0	0	Pes	1	13.59	126
Q22190	303	R. minima	var minima	Aust., Tinaroo Ck, Q	17.05 S	714	1260	1	8	0	0	Yes	1	10.99	126
Q22191	304	R. minima	var tomentosa	Australia, Petford, Q	17.20 S			1	15	0	0	Yes	1	9.03	123
Q22192	305	R. minima	var tomentosa	Australia, Almaden, Q	17.18S			1	27	0	0	Yes	1	8.86	126
Q22193	306	R. minima	var tomentosa	Australia, Ravenshoe, Q	Q 17.38 S			1	17	0	0	Tes	1	12.15	102
Q22194	308	R. minima	var minima	Austraila, Walsh R., Q	17.08S	-	840	1	36	0	0	Fes	1	8.80	133

An even group of fine twining vines with small leaves (290 was densest and leafiest). Leaves and stems pubescent. Flowers autumn, winter, spring. Seeds bean shaped, grey to dark grey with slight beige and dark reddish-brown marking. Pod aroma is similar to those R. minima from the Americas and some from Africa. A regional group from the Atherton Tablelands and hinterland.

GROUP 9 (13 Members)

Q22204	235	R. minima	var eurycarpa	Australia, Julia Ck, Q	20.14 S	125	458	1	10	0	1	Tes	2	17.22	71
Q22205	272	R. ninima	var nuda	Australia, Julia Ck, Q	20.39 s	125	458	1	13	0	1	Yea	2	13.64	75
CQ1372	264	R. minima	var eurycarpa	Australia, Longreach, Q	23.255	191	442	1	6	0	1	Tes	2	15.06	68
Q22207	159	R. minima	var eurycarpa	Aust., Charleville, Q	26.24s	304	515	1		0	1	Lightly	1	13.74	43
TPI 49	14	R. minima	var eurycarpa	Australia, McDonnel, Q	11.30 S			2	11	0	1	Lightly	2	12.36	123
CQ795	138	R. minirs	var eurycarpa	Aust., Katherine, NT	14.295	120	871	2	11	0	1	Lightly	2	20.41	142
Q22208	292	R. ainima	var eurycarpa	Australia, Dalby, Q	20.19 S	342	673	2	8	-	1	Lightly	2	14.74	100
. Q22206	271.	R. minima,	var eurycarpa.	Australia, Doomadger... Q	18.00s				9	0	1	- Pras	1.2	\%16. 17	. 106
TEI 32	259.	R. minima	var eutycarpa	"Aust.. Charter's Twrs, Q	19.50 S	306	650	1	11	0		Tes	\cdots	11.48	75
Q22209	177	R. minima	var eurycarpa	Australia, Amberiey, Q	27.375	25	887	3	2	0	1	-Lighely	1	10.64	96
Q22210	192	R. ainima	var minima	Australia, Biloela, Q	24.245	173	699	3	7	0	1	Lightly	1	9.12	71
Q22211	238	R. minima	var eurycarpa.	Australia, Gayndah, Q	25.385	104	786	3	9	0	1	Lightly	1	10.74	64
Q22212	295	R. minima	var eurycarpa	Australia, Reid R, Q	19.49 S	74	929	3	5	0	1	Lightly	1	9.18	58

Several groups of similar lines 14 and 138 from north Queensland. 177, 192, 238, 292 and 295 from central south-east Queensland. 235 , 271,264 and 159 from western Queensland that form a variable group of twining and trailing vines which flower most of the year with often rapid seed shattering.

A unifoliate trailing and twining vine with medium to large leaves, pubescent. Flowers most of the year. Seeds are U shaped, 15 is light brown with lighter and tatker markings and 26 pinkish grey with lighter greenish markings.

Access	Proj.	Species	ORIGIN		A1t.	Rain	Soil		Re	Grow	Resin	Viscid	Viscid	Pod	Pod.	Seed	Day to
No.	No.	(After L, Pedley)	Country. Province	Lat.	(m)	fall	Text	pH	act.	Hab.	Glands		Pod	Aroma	Retn	***	

vecur 11 (9 Menbers)

CQ2796	141	R, minima var nuda	Aust., Ratherine, NT	14.29 S	120	87.1	7	16	0	0		2	16.86	172
Q22196	166	R. minima var nuda	Aust., Wave Hill. NT	17.255			7	10	0	0	Yes	2	17.08	123
Q22199	276	R. minima var nuda	Aust., Wave Rill, NT	17.295			7	4	0	0	Tes	2	16.44	75
Q22195	142	R. minime var nuda	Aust., Top Springs, NT	16.38 s			7	14	0	0	Yes	2	22.16	135
Q22197	167	R. minima var nuda	Aust., Top Springs, NT	16.205			7	6	0	0	Yes	2	18.87	141
Q22198	275	R. minima var nuda	Aust., Top Springs, NT	16.385			7	11	0	0	Yes	2	-	142
Q22200	277	R. minima var nuda	Aust., Moolooloo, NT	16.205			7	21	0	0	Tes	2	18.63	130
Q22201.	278	R. minima var nuda	Aust., Kidman Spr.. NT	16.205		635	7	11	0	0	Tes	2	20.84	116
Q22202	270	R. minima var nuda	Aust., Kimberley RS, WA	15.39 S	46	787	7		0	0		2	+	171

An even group of Australian natives from the Northern Terfitory and Northern Western Australia. They are trailing, late sumer, autum and winter flowering.
GROUP 12 (2 Members)

Frostrate annals, small leaved, with hairy stems and leaves. Autumn/winter flowering before dying off. Pod set poor. Seeds elongated 0 shaped with aril. Greyish pink with brown markings.

52703	110	R. minime var falcata	Madagascar, Tulear	23.005	450	600	7		1	9	0	1	จ. slight	2	14.17	114
526778	8 132	R. minima var falcata	Sth Africa, Cape	33.38s	150	550	s		1	14	0	1	V. slight	2	14.31	117
60335	119	R. minima var falcata	Sth Africa, Transval	25.35 S	182	550	M	c	1	9	0	1	V. slight	2	14.18	71
52679	35	Chrysoscias ap	Sth Africa, Cape	32.465					3	0	0	0	V. slight	1	17.89	94
52126	204	R. senna var texana	Paraguay. Charo Rio Ve						1		0	0	Stroagly	2	12.50	96
Q22215	294	R. minima var nuda	Australia, Reid R, Q	19.43 S	74	929			2	12	0	0	จ. slight	1	10.13	46
P7683	158	R. minima var nuda	Aust., Warialda, NSW	29.33 S	320	680		c	3	4	0	0		1	12.62	45
Q22213	232	R. minima var nuda	Aust., Harrisville, Q	27.48 S	45	937			3	5	0	0	V. slight	1	11.54	64
Q22312	286	R. ninima var nuda	Australia, Warwick, Q	28.035	455	702			3	29	0	0	V. slight	1	11.40	39
50977	201	R. minima var nuda	Unknown						3	6	0	0	V. slight:	1	9.04	43

A fine to medium sized group of twining to semi-erect vines similar to group 526 but with pods with enlarged glands with hairs which become sticky. Flowers and seed most of the year. Seeds bean to U shaped, grey to brown with lighter or darker marking.

\therefore cause 14 (2 4embers)

Fine trailing and weakly twining lines, 287 summer flowering, 307 flowering most of the year.

GROUP 15 (100 Members)

17838	193	R. kilamandsharica
C9850	87	R. minimávar minima
Q0851	139	R. minima varminima
Q10038	89	R. minima varminima
Q10041	88	R. minima var minima
Q10121	256	R. minima var minima
Q10122	257	R. minima var minima
P7107	140	R. ainima var minima

Kenya			
Brazil. Bahia	19.26 S		
Brazil, Pernambuco	7.50		
Brazil, Para	7.51 S		
Brazil, Para	7.22 S	341	G
Peru, Ptaui	5.15 S		
Peru, Piaui	5.15 S		
Mexico, Onxaca	16.45 N		

Access No. *	Proj. No.	Species (After L, Pedley)	ORIGIN Country, Province	Lat.	Alt. $\text { (} \mathrm{m} \text {) }$	$\begin{aligned} & \text { Rain } \\ & \text { fall } \end{aligned}$	Soil Text $+$	pH	Re act. 04	Grow Hab. \Downarrow	Resin G1ands **	Viscid Stem \forall	Viscid Pod \#	$\begin{gathered} \text { Pod } \\ \text { Arome } \end{gathered}$	Pod Retn 0	$\begin{gathered} \text { Seed } \\ \text { Yt } \\ \star * * \end{gathered}$	Day $E 0$ Flower

36696	114	R. ginima va
36696	143	R. minima var minima
36697	179	R. minima var minima
155	144	R. minima
37221	145	R. minima
24	146	
37396	127	
37410	241	
595	246	
634	128	
225	242	
227	251	
792	1	
267	200	
43	131	R.
588	118	R. mini
642	189	R. minim
458	136	R. minima
896	180	R. minima
68897	153	R. minima
0356	168	R. minima
0357	169	R.
65	96	R.
21	11	R.
76225	1	R.
6230	191	R.
8466	182	R.
1386	156	R.
2311	183	R.
831	219	R. minima var
0835	221	R. minit
0860	222	R. minima
137	228	R. minima
170	78	R.
717	258	R.
33976	239	R.
34875	243	
50	95	R.
3669	198	R. mini
3715	199	R. minima
	245	R. mini
37	47	R. minima
49808	129	R. minima
51370	202	R. minima
92	206	R. minima
8641	207	R. minima
Q22309	253	
1203	97	R. minim
61203	209	R.
69078	162	R. minima var minima
70355	210	R. minima var miníma
76219	170	R. minime vat minima
76220	98	R.
76223	99	
	100	

Mexico, Vera Cruz	18.55N	900				
Mexico, Vera Cruz	18.55 N	900				
Mexico, Vera Cruz	18.45N	150				
Mexico, Vera Cruz	18.45N					
Mexico, Jalisco	20.40 N	1550				
Honduras, Fran. Morazan	14.10 N					
Nicaragua, Managua	12.19 N	350				
Nicaragua, Managua	12.18 N	100				
Bolivia, Santa Cruz	17.38 S	450		S		
Bolivia, Santa Cruz	18.085	600				
Bolivia, Santa Cruz	18.085	600				
Bolivia, Santa Gruz	17.45s					
Brazil, Sao Paulo	21.68S	350	1100			
Unknown						
Unknown						
Venezuela, Sucre	110.48 N					
Mexico, Tamaulipas	22.33 N	60	700	M		c
Brazil, Paraiba	7.05 S		300			
Unknown						
Unknown						
Antigua, St George	17.07N					
Antigua, St George	17.08N					
Brazil, Sao Paulo						
Mexico, Yucatan	21.10 N	5	666	s		
Mexico, Yucatan	21.22 N	10	1050	c		
Mexico, Quintana, Roo	20.05 N	5	1350	c		
Argentina, jujuy	24.175	1250	650	L	7.7	c
Mexico, Sinaloa	25.18 N	200	450	M		
Cuba, Matanzas	23.10 N	30	1400		8.0	C
Mexico, Guerrero	18.22 N	740	1040	C	7.2	B
Mexico, Sonora	28.40 N	400	400	L	8.5	C
Mexico, Sonora	27.40 N					
Mexico, Guerrero	18.27 N	1450	1150	M	7.0	B
Mexico, Geurrero	18.27N	1450	1000	L		
Unknown	27.30 S					
Costa Rica, Guanacaste	10.26 N	70				
Mexico, Oaxaca	16.51 N					
Brazil, Rio de Janeiro	22.51S					
Mexico, Vera Cruz	22:535 ${ }^{\text {\% }}$	900				
Mexico, Vera Cruz	18.45 N	300				
licaragua, Managua	12.06 H	15				
Nicaragua, Managua	12.19 M	350				
Brazil, Bahia	12.00 N					
Brazil, Bahia						
Panama, Panama City	9.03 N			M		
Mexico. Tamaulipas	22.22 N	280	1100	M		c
Unknown						
Colombia, Magdalena	10.17\%	200				
Colombia, Magdalena	10.17N					
Belize						
St Ritts	17.66 H					
Unknown						
Mexico. Yucatan	21.01 H	5	940	L		
Mexico, Yucatan	21.01 N	10	900			
Mexico, Yucatan	20.44 N	50	1150			
Mexico, Yucatan	20.27N	55	1150			

Access No. *	Proj. No.	Species (Afeer L. Pedley)	ORIGIN Country, Province	Lat.	Alt. (m)	$\begin{aligned} & \text { Rain } \\ & \text { fall } \end{aligned}$	Soil Text $+$	ph	Re act. 01	$\begin{gathered} \text { Grow } \\ \text { Hab. } \end{gathered}$	Resin Glands **	Viscid Stem \downarrow	Viscid Pod 1	Pod	$\begin{gathered} \text { Pod } \\ \text { Retn } \\ \end{gathered}$	$\begin{aligned} & \text { Seed } \\ & \mathrm{Ht} \\ & \star * * \end{aligned}$	Day 50 Elower

76227	120	R. minima var minima
76228	213	R. minima var minima
76229	171	R. minima var minima
76231	214	R. minima var minima
76232	215	R. minima var minima
76235	181	R. minima var minima
76236	163	R. minima var minima
78473	216	R. minima var nuda
79668	172	R. minima var minima
81380	173	R. minima var minima
81381	174	R. minima var minima
81382	122	R. minima var minima
81384	175	R. minima var minima
81385	116	R. minima var minima
81387	176	R. minima var minima
81728	137	R. minima var minima
81729	254	R. minima var minima
82308	217	R. minima var minima
82309	91	R. minima var minima
82390	157	R. minima var minima
84522	218	R. minima var minima
84953	184	R. minima var minima
86151	125	R. minima var minima
87555	220	R. minima var minima
89294	285	R. minima var minima
90860	B	86
R. minima var mima		

Mexico, Tucatan	20.11N	125	1150	c		
Mexico, Yucatan	20.11N	125	1150	G		
Belize	18.25 N	5	1400	c		
Mexico. Campeche	19.47 N	5	1000	G		
Mexico, Campeche	19.52 N	50	1000			
Mexico, Campeche	19.42 N	50	1000	G		
Mexico, Campeche	19.47 N	50	1100	G		
Argentina, Salta	24.465	1325	590	M	6.3	A
Cuba, Santiago de Cuba	20.00 N	5	1000	L	7.0	B
Mexico, Sinaloa	22.48 N	2	1000			
Mexico, Sinaloa	23.00 N	20	1000			
Mexico, Sinaloa	24.45 N	50	450			
Mexico, Sinaloa	24.50 N	30	450			
Mexico, Sinaloa	24.50 N	30	450			
Mexico, Sinaloa	25.48 N	15	310			
Colombia, Cauco	1.55 N	750				
Ecuador, Manabi	1.055	350				
Cuba, La Habane	23.065	5	1300		8.5	c
Cuba, Guantanamo	20.22N	250	1200		7.0	B
Cuba, Santiago de Cuba	20.00 N	50	1000		8.0	c
Mexico, Sinaloa	24.42N	84	700	c	8.2	C
Mexico, Morelos	18.30 N	1100	1000	Y	7.0	B
Mexico, Nayarit	21.20 N	900	1000	L	6.5	A
Mexico, Vera Cruz	18.28 N	70	1400	\pm	6.0	A
Mexico, Quintana Roo						
Mexico, Sonora	27.40 N	500	700	L	6.5	A
Mexico, Sonota	27.44 N					
Nexico, Sinaloa	26.00 N	150	300	D		
Mexico, Sinaloa	23.56 N	10	700	I		
Mexico, Sinaloa	22.49 N	10	1000	L	6.0	A
Mexico, Sinaloa	23.00 N	50	1000	L	6.5	A
Mexico, Guerrero	18.26 N	8000	9000	L		
Niexico, Campeche	19.48 N	3	1094	L	8.0	c
Cuba, Matanzas	23.10N					
Brazil						
Brazil, Parana	21.585	500				

6	0
11	0
8	0
14	0
10	0
21	0
14	0
30	0
13	0
8	0
24	0
23	0
18	0
13	0
20	0
11	0
14	0
8	0
7	0
18	0
25	0
11	0
10	0
7	0
9	0
15	0
8	0
13	0
9	0
20	
28	0
16	18
6	
11	0
18	0

Yes	1	15.61	46
Yes	1	16.11	38
Yes	1	10.40	61
Yes	1	13.35	59
Yes	1	14.41	64
Yes	2	15.26	66
Yes	1	19.30	66
Yes	1	14.15	121
Yes	1	9.86	46
Yes	1	11.45	50
Yes	1	13.94	171
Yes	1	13.47	63
Yes	3	15.00	68
Yes	3	18.05	114
Yes	3	13.36	57
Yes	1	11.62	63
Yes	1	12.73	43
Yes	1	13.02	43
Yes	3	18.25	63
Yes	1	9.66	50
Yes	2	18.50	96
Yes	1	19.02	151
Yes	1	11.31	78
Yes	1	11.25	56
Yes	1	15.15	43
Yes	2	18.67	52
Yes	3	17.78	59
Yes	3	17.31	96
Yes	3	13.45	124
Yes	1	16.04	71
Yes	1	15.96	106
Yes	1	14.39	140
Yes	1	13.96	50
Yes	1	12.40	46
Yes	1	11.88	+
Yes	1	10.21	+

A very large relatively even group of twining, medium to fine vines with small to medium sized leaves. Leaf and stem hair vary from almost glabrous to pubescent. Elowering enerally continues throughout, the year... Seeds ara bean or kidney shaped, brown to dark grey with lighter and darker marking.

```
GROUP 16 ( 8 Members)
```

76209	267	R. longeracenosa	Eelize	17.08N	140	1400	C			1	12	0	0	Yes	2	21.71	204
76218	279	R. longeracemosa	Mexico, Campeche	19.52 N	50	1000	c			1	3	0	0	Yes	2	23.46	163
87534	13	R. Iongeracemosa	Mexico, Vera Cruz	18.30 N	220	2300	M	6.5	A	1	10	0	0	Yes	2	20.26	239
87543	19	R. longeracemosa	Mexico, Vera Cruz	18.28 N	200	2200	M	6.5	A	1	11	0	0	Yes	2	22.42	213
87853	10	R. longeracenosa	Mexico, Chiapas	16.51 N	1000	1000	L			1	24	0	0		2	20.02	300
76210	323	R. Longeracemosa	Guntemala, Peten	17.12 N	150	2000		5.7		1	16	0	0		2	19.33	$+$
76214	324	R. longeracemosa-"	Mexico, Quintana Roo	20.59 M	5	1500	G			1	10	0	0		2	20.19	+
76215	325	R. longeracemosa	Mexico, Quintana Roo	21.00 N	5	1500	c			1	10	0	0		2	$+$	+

Robust, twining vines with hairy stems and medium to large hairy leaves. Racemes scmetimes branched. Flowers in autumn and or winter with some light flowering in spring. Seeds U to scimitar shaped, grey to greyish brown with lighter and darker markings.

36542	46	R. pyramidalis	Unknown							1	11	0	0	Strongly	4	79.35	158
36544	47	R. pyramidalis	Unknown							1	9	0	0	Strongly	4	76.98	171
38068	48	R. pyramidalis	Unknown							1	7	0	0	Strongly	4	76.81	168
50758	49	R. pyramidalis	Unknown							1	20	0	0	Strongly	4	72.24	171
81388	50	R. pyramidalis	Mexico, Sinoloa	25.33N	20	460	M			1	15	0	0	Strongly	4	78.68	140
90871	51	R. pyramidalis	Mexico, Sonora	27.03 N	350	540	1	8.0	c	1	17	0	0	Strongly	4	87.12	122
35704	40	R. phaseoloides	Brazil, Matao							1	35	0	0	Strongly	4	40.43	203
58397	41	R. phaseoloides (aff.)	Brazil, Sao Paulo							1		0	0	No	4	38.34	213
52682	42	R. luteola var verdickii	Zambia, Eastern	13.47 S	630	750	S		A	1		0	0	Yes	3	64.86	182

Robust, large leaved pubescent vines. Flowering autumn, winter and spring (except 40 and 41 winter). Seeds large, rounded, black and red. (42 light to dark brown). Stem hairs sticky in 42 which is very large and robust.

GROUP 18 (2 Members)

A very robust, large leaved hairy vine, the stem hairs lightly sticky. Hinter flowering, seeds large, rounded, dark blue.

GROUP 19 (12 Members)

CQ998	4	Eriosena edule	Unknown							1		1	1	Yes	1	27.32	72	0
29081	5	Eriosema edule	Unknown							1	6	1	1		1	25.34	72	0
36251	2	Eriosema edule	Brazil, Sao Paulo	23.005						1	23	1		Yes	1	13.09	163	
37647	7	Eriosema edule	Bolivia, Santa Catarina	18.08S	630					1	5	1	1	Tes	1	33.47	123	
52127	8	Eriosema edule	Paraguay							1	6	1	1	Yes	1	31.65	100	
56379	1	Eriosema edule	Brazil, Sao Paulo							1	11	1	1	Yes	1	26.97	115	
78468.	3	Erioseaa edule	Argentina, Cordoba	31.245	800	1100	G	8.0	c	1	11	1	1	Yes	1	38.82	52	
78476	6	Eriosega edule	Argentina, Corrientas	28.16 S	75	1100	s	6.0	A	1	19	1	1	Tes	1	25.93	63	
90902	20	Eriosema edule	Mexico, Sinaloa	26.48N	1150	800	7	6.0	A	1	1	1	1	Yes	1	35.87	63	
93017	314	Eriosera edule	Brazil, Sao Paulo	21.40 S	600		Y			1	8	1	1	Lightly	1	27.21	+	-
93022	315	Eriosema edule	Brazil, Sao Paulo	21.14 S	525		L			1	7	1	1	Lightly	1	23.51	$+$	
55796	320	Eriosema edule	Brazil, Bahia	10.315	550		L			1	8	1	1		1	$+$	+	

A group of South smerican plants that are medium sized twining vines with medium sized, hairy and sticky leaves and stems, Many new shoots originate from underground (but: =ay not she chazomarous). shacemes somerimes branched. Elowers throughout the year as a rule. Seeds scimetar shaped, brown and dark brown with underground kut: ay motzbe

GROUP 20 (6 Menbers)

52743	56	R. subiobata	Madaga	car, A	23.105	300	550	7		1	3	1	0	Yes	2	39.00	+
Q17446	310	R. sublobata	Unknow							1	1	1	0	Yes	2	40.40	134
52728	55	R. sublobata	Zambia	North	13.47 S	600	750	L	A	1	4	1	0	Yes	2	43.55	140
73057	64	R. sublobata	Malawi	South	16.33 S					1	3	1	0	Yes	2	51.16	$+$
73058	65	R, sublobata	Malawi	South	16.33 S					1	J	1	0	Yes	2	53.17	147
60338	67	R. sublobata	Kenya,	Coast	4.04 S	30	1250	s	c	1		1	0	Yes	2	58.78	115

These were a group of medium to large vines with laree leaves. Stems sticky and leaves hairy and usually sticky. Once flowering commenced it continued throughout the year. Seeds large and rounded tending to bean shaped and were dark grey, black or very dark brown with slight lighter atarkinga.

Access No.	Proj. No.	Species (After L. Pedley)	ORIGIN Country, Province	Lat.	${ }_{(m)}^{A 1 t} .$	$\begin{aligned} & \text { Rain } \\ & \text { fall } \end{aligned}$	$\begin{gathered} \text { Soil } \\ \text { Text } \\ +\quad \end{gathered}$	pH	Re act. 00	Grow Hab. 1	Resin Glands **	Tiscid Stem 1	Viscid Pod 1	Pod Aroma	pod Retn 4	seed He ***	Day to Elower

GROUP 21 (10 Members)

52731	58	R. sublobata	Tanzania, Morogoro	7.105	500	800		1	4	1	0	Yes	2	52.64	165
52729	59	R. sublobata	Zambia, Northern	13.47 S	600	750	7	1	8	1	0	Tes	2	59.54	176
65480	62	R. Sublobata	Zimbabwe, Nyamandh1ove	19.31 s				1	7	1	0	Yes	2	58.25	169
69502	63	R. sublobata	Zimbabwe, Nyamandhlova	19.31 S				1	7	1	0	Yes	2	73.23	128
52727	57	R. sublobata	zambia					1	1	1	0	Tes	2	57.00	197
43785	60	R. sublobata	Zambia, Southern					1	6	1	0	Yes	2	60.00	203
77003	66	R. sublobata	Zambia, Central	15.39 s				1	1	1	0	Tes	2	58.27	218
52684	61	R. sublobata aff.	Tanzania, Mara	2.30 S	1500	750		1	1	1	0	Yes	2	68.81	181
90761	75	R. sp	Mexico, Chihuahua	28.29 N	1900	350	L	1	57	0	1	No	2	108.33	129
30232	45	R. rothii	India					1	7	0	1	Strongly	3	73.25	100

 spring flowering. 45 summer flowering. Seeds large rounded tencing to bean shaped, mostly dark grey, black and very dark brown (45 light yellowish green with
dark brown markings).

GROUP 22 (17 Members)

67324	282	R. totta var fenchelii	Namibia, Ovamboland	19.005					1	8	0	0	Tes	2	50.83	64
78172	84	R. totia	Sth Africa, Orange	28.135					1	1	0	0	Yes	2	38.21	81
52742	70	R. totta	Zambia, Northern	11.505	1200	1150	c		1	9	0	0	Tes	2	36.33	153
77004	74	R. totta	Zambia, Central	15.395					1	16	0	0	Yes	2	39.40	161
60339	82	R. totta	Sth Africa, Transval	22.23 s	485	350	1	B	1	2	0	0	Yes	2	26.01	56
60342	77.	R, totta	Botswana, Central	20.10 S	818	450	s	B	1	11	0	0	Yes	2	42.69	69
Q22311	85	R. totta	Unknown						1		0	0	Yes	2	38.26	72
60332	72	R. totta	Zimbabwe, Nyamandhlovu	19.225	1121	550	1	B	1	2	0	0	Yes	2	37.05	72
60337	76	R. totta	Namibis, Ovamboland	19.495	1318	400	Y	B	1	4	0	0	Yes	2	39.59	69
52738	79	R. tota	Zimbabwe, Wankie	19.005	1060	650	s		1	1	0	0	Yes	2	35.80	72
52739	80	R. totta	Botswana, Ghanzi	21.38 S	1100	450			1	1	0	0	Yes	2	37.99	72
72979	83	R. totta	Zimbabwe, Nyamandhlovy	19.315			X		1	1	0	0	Tes	2	37.07	81
52740	81	R. totta	Sth Africa, Transvaal	26.065	1600				1	3	0	0	Ies	2	26.27	91
36145	53	R. caribaea	Unknown						1	24	0	1	No	3	37.16	147
52677	78	R. caribaea	Sth Africa, Cape	33.385	150	700	s		1	16	0	1	No	3	39.04	93
60329	236	R. caribaea	Sth Africa, Cape	33.555	152	800	s	B	1	27.	0	0	No	2	34.66	113
52687	316	R. csribaea aff.	Sth Africa, Transval	23.015	1000				1		0	0		2	$+$	$+$

A group of fine to eedium sized vines with small to medium sized leaves, leaves and stens usually hairy. seeds were elongated, kidney shaped with aril, grey of light grey with both dark brown and lighter pinkish-grey markings. Most accessions flowered throughout the year, a few only autum, winter and spring.

GROUP 23 (4 Members)

25449	43	R. schimperi	India						4	17	0	0	No	2	86.28	81
67641	44	R. schimperi	India						4		0	0	No	2	77.91	81
60346	34	R. velutina	Kenya, Coast	2.385	30	750	s	A	4		0	0		2	41.50	240
75422	54	R. usacbarensis var obtusif.	Kenya, Coast	3.235					5		0	1		+	51.85	231

A group of small seei-erect later twining plants with small pubescent leaves. Seeds variable, mainly large rounded to 0-shaped (34), (oo bean shaped (54).
Flowers throughout the yeer ($44-43$), autumn and winter (34) and winter with poor seed set (54).

[^0]: GGOUP 3 (9) (Members)

