Indicadores químicos de la salud del suelo en sistemas silvopastoriles, bosque de restauración y cultivo de maíz en un bosque seco tropical

Autores/as

DOI:

https://doi.org/10.17138/tgft(11)220-232

Resumen

Los cultivos agrícolas y pasturas en monocultivo frecuentemente comprometen servicios ecosistémicos por la pérdida de suelos y biodiversidad. Como alternativa en la producción ganadera se han propuesto los sistemas silvopastoriles (SSP); sin embargo, hay pocos estudios que demuestren los beneficios de estos sobre la salud del suelo. Este estudio tuvo como propósito evaluar el efecto de diferentes usos de la tierra sobre la salud del suelo medida a través de indicadores químicos. Para tal fin, se usaron parcelas con al menos 19 años bajo los siguientes usos: (i) cultivo intensivo de maíz (Zea mays), (ii) pastura mixta de gramíneas (Megathyrsus maximus + Dichantium aristatum), (iii) SSP con pastos + arbustos (Cresentia cujete y Leucaena leucocephala), (iv) SSP multiestrato con los mismos pastos + leñosas de uso forrajero (Cassia grandis, Albizia saman y Guazuma ulmifolia) y (v) bosque secundario de restauración como referencia. Las evaluaciones se hicieron en épocas contrastantes (seca y lluviosa), en suelos del Valle medio del rio Sinú (Colombia), con gradiente de drenaje. En general, los suelos de los SSP presentaron los más altos indicadores químicos: MOS, N total, Mg, B, N-NO3 y CICE; la pastura de solo gramíneas presentó los mayores valores en micronutrientes: Mn, Fe, Cu, Zn y S, y NH4 y valores más bajos de pH, P, y NO3 y más altos de Al. El bosque secundario presentó valores intermedios para todos los indicadores, mientras que los suelos con maíz presentaron los indicadores químicos más pobres. Se concluye que los SSP mejoran los indicadores químicos de salud del suelo en comparación a la pastura de solo gramíneas y el monocultivo de maíz.

Biografía del autor/a

Lucia E. Ocampo, Universidad Nacional de Colombia. Medellín, Colombia

Antioquia

Referencias bibliográficas

Acevedo-Sandoval O; Ortiz-Hernández E; Cruz-Sánchez M; Cruz-Chávez E. 2004. El papel de óxidos de hierro en suelos. Terra Latinoamericana 22(4):485–497. bit.ly/3YuSaS2

Ballesteros-Correa J; Morelo-García L; Pérez-Torres J. 2019. Composición y estructura vegetal de fragmentos de bosque seco tropical en paisajes de ganadería extensiva bajo manejo silvopastoril y convencional en Córdoba, Colombia. Caldasia 41(1):224–234. doi: 10.15446/caldasia.v41n1.71320

Balume I; Agumas B; Musyoki M; Marhan S; Cadisch G; Rasche F. 2022. Potential proteolytic enzyme activities modulate archaeal and bacterial nitrifier abundance in soils differing in acidity and organic residue treatment. Applied Soil Ecology 169:104188. doi: 10.1016/j.apsoil.2021.104188

Bordron B; Robin A; Oliveira IR; Guillemot J; Laclau JP; Jourdan C; Nouvellon Y; Abreu-Junior CH; Trivelin PCO; Gonçalves JLM; Plassard C; Bouillet JP. 2019. Fertilization increases the functional specialization of fine roots in deep soil layers for young Eucalyptus grandis trees. Forest Ecology and Management Journal 431:6–16. doi: 10.1016/j.foreco.2018.03.018

Brevik EC; Pereg L; Steffan JJ; Burgess LC. 2018. Soil ecosystem services and human health. Current Opinion in Environmental Science and Health Journal 5:87–92. doi: 10.1016/j.coesh.2018.07.003

Bryan JA. 2000. Nitrogen-fixing leguminous trees and shrubs: A basic resource of agroforestry. En: Ashton MS; Montagnini F, eds. The silvicultural basis for agroforestry systems. CRC Press, Boca Raton, USA. pp. 41–60. bit.ly/3OuuJU3

Burt R. 2004. Soil Survey Laboratory Methods Manual. Soil Survey Investigations - Report No. 42 Version 4.0. United States Department of Agriculture Natural Resources Conservation Service. 735 p. bit.ly/3KCEy10

Cajas-Girón YS. 2002. Evaluation of the role of trees and shrubs in seasonally dry pasture in the Caribbean Region of Colombia. Tesis Doctoral. Universidad de Bangor, Gwynedd, Reino Unido. bit.ly/3Yzutrx

Cajas-Girón YS, Sinclair FL. 2001. Characterization of multistrata silvopastoral systems on seasonally dry pastures in the Caribbean Region of Colombia. Agroforestry Systems 53(2):215–225. doi: 10.1023/A:1013384706085

Cajas-Girón YS; Jones M; Sinclair FL. 2002. Combining tree diversity and cattle on seasonally dry pastures in Colombia. En: Proceeding of the International conference on responding to the increasing global demand for animal products. Yucatan, Mexico. British Society of Animal Science, pp. 53–54.

Casanova F; Ramírez L; Solorio F. 2007. Interacciones radiculares en sistemas agroforestales: mecanismos y opciones de manejo. Avances en Investigación Agropecuaria 11(3):41–52. bit.ly/3Ysjr7z

Castellanos-Barliza J; León Peláez JD. 2011. Descomposición de hojarasca y liberación de nutrientes en plantaciones de Acacia mangium (Mimosaceae) establecidas en suelos degradados de Colombia. Revista de Biología Tropical 59(1):113–128. doi: 10.15517/rbt.v59i1.3182

Chavarro-Bermeo JP; Arruda B; Mora-Motta DA; Bejarano-Herrera W; Ortiz-Morea FA; Somenahally A; Silva-Olaya AM. 2022. Responses of soil phosphorus fractions to land-use change in Colombian Amazon. Sustainability 14(4):2285. doi: 10.3390/su14042285

Chetelat B; Gaillardet J; Chen Jiubin. 2021. Dynamic of boron in forest ecosystems traced by its isotopes: A modeling approach. Chemical Geology 560:119994. doi: 10.1016/j.chemgeo.2020.119994

Chomel M; Guittonny‐Larchevêque M; Fernandez C; Gallet C; DesRochers A; Paré D; Jackson BG; Baldy V. 2016. Plant secondary metabolites: a key driver of litter decomposition and soil nutrient cycling. Journal of Ecology 104(6):1527–1541. jstor.org/stable/26177084

Dhaliwal SS; Naresh RK; Mandal A; Singh R; Dhaliwal MK. 2019. Dynamics and transformations of micronutrients in agricultural soils as influenced by organic matter build-up: A review. Environmental and Sustainability Indicators 1–2:100007, doi: 10.1016/j.indic.2019.100007

Doran JW; Parkin TB. 1994. Defining and assessing soil quality. En: Doran JW; Coleman DC; Bezdicek DF; Stewart BA, eds. Defining Soil Quality for a Sustainable Environment, SSSA special publication, Soil Science Society of America, Madison, WI, USA. 35:3–21. doi: 10.2136/sssaspecpub35.c1

Gamarra-Lezcano CC, Díaz-Lezcano MI; Vera-Ortíz M; Galeano MP; Cabrera-Cardús AJN. 2018. Relación carbono-nitrógeno en suelos de sistemas silvopastoriles del Chaco paraguayo. Revista Mexicana de Ciencias Forestales 9(46):4–26. bit.ly/3YKrsEY

Herrero M; Thornton PK; Notenbaert AM; Wood S; Msangi S; Freeman HA; Bossio D; Dixon J; Peters M; Van de Steeg J; Lynam J; Parthasarathy Rao P; Macmillan S; Gerard B; McDermott J; Seré C; Rosegrant M. 2010. Smart investments in sustainable food production: Revisiting mixed crop-livestock systems. Science 327(5967):822–825. doi: 10.1126/science.1183725

Holdridge LR. 1971. Forest environments in tropical life zones: a pilot study. 1st ed. Pergamon Press. Oxford, UK. ISBN: 0080163408

IGAC (Instituto Geográfico Agustín Codazzi). 2009. Estudio general de suelos y zonificación de tierras de Córdoba. 502 p. ISBN: 9789588323329

Jia Qianmin; Xu Ranran; Chang Shenghua; Zhang Cheng; Liu Yongjie; Shi Wei; Peng Zechen; Hou Fujiang. 2020. Planting practices with nutrient strategies to improves productivity of rain-fed corn and resource use efficiency in semi-arid regions. Agricultural Water Management 228:105879. doi: 10.1016/j.agwat.2019.105879

Lamb D; Erskine PD; Parrotta JA. 2005. Restoration of degraded tropical forest landscapes. Science 310(5754):1628–1632. doi: 10.1126/science.1111773

Mao Qinggong; Lu Xiankai; Zhou Kaijun; Chen Hao; Zhu Xiaomin; Mori Taiki; Mo Jiangming. 2017. Effects of long-term nitrogen and phosphorus additions on soil acidification in an N-rich tropical forest. Geoderma 285:57–63. doi: 10.1016/j.geoderma.2016.09.017

Martínez JC. 2013. Producción y descomposición de hojarasca en sistemas silvopastoriles de estratos múltiples y su efecto sobre propiedades bioorgánicas del suelo en el Valle Medio del Río Sinú. Tesis de Doctorado. Universidad Nacional de Colombia, Medellín, Colombia. handle/unal/20938

Martínez J; Cajas YS; León JD; Osorio NW. 2014. Silvopastoral systems enhance soil quality in grasslands of Colombia. Applied and Environmental Soil Science 2014:359736. doi: 10.1155/2014/359736

McAlpine CA; Etter A; Fearnside PM; Seabrook L; Laurance WF. 2009. Increasing world consumption of beef as a driver of regional and global change: a call for policy action based on evidence from Queensland (Australia), Colombia and Brazil. Global Environmental Change 19(1):21–33. doi: 10.1016/j.gloenvcha.2008.10.008

Mejía-Kerguelén S; Suárez-Paternina EA; Atencio-Solano LM; Tapia-Coronado JJ; Paternina-Paternina Y; Cuadrado-Capella HR. 2020. Desempeño productivo de bovinos de levante en pastoreo rotacional de Bothriochloa pertusa (L) A. Camus en Colombia. Pastos y Forrajes 43(4):352–360. bit.ly/3quUDzi

Miner GL; Delgado JA; Ippolito JA; Barbarick KA; Stewart CE; Manter DK; Del Grosso SJ; Halvorson AD; Floyd BA; D’Adamo RE. 2018. Influence of long-term nitrogen fertilization on crop and soil micronutrients in a no-till maize cropping system. Field Crops Research 228:170–182. doi: 10.1016/j.fcr.2018.08.017

Moebius-Clune BN; Moebius-Clune DJ; Gugino BK; Idowu OJ; Schindelbeck RR; Ristow AJ; van Es HM; Thies JE; Shayler HA; McBride MB; Kurtz KSM; Wolfe DW; Abawi GS. 2016. Comprehensive Assessment of Soil Health – The Cornell Framework Training Manual 3.2. Cornell University, Geneva, NY, USA. 123 p. bit.ly/3qFoBk2

Norton J; Ouyang Y. 2019. Controls and adaptive management of nitrification in agricultural soils. Frontiers in Microbiology 10:1931. doi: 10.3389/fmicb.2019.01931

Obalum SE; Buri MM; Nwite JC; Hermansah; Watanabe Y; Igwe CA; Wakatsuki T. 2012. Soil degradation-induced decline in productivity of Sub-Saharan African soils: The prospects of looking downwards the lowlands with the Sawah Ecotechnology. Applied and Environmental Soil Science 2012:673926. doi: 10.1155/2012/673926

Osorio NW. 2014. Manejo de nutrientes en suelos del trópico. Colombia: Editorial L. Vieco S.A.S. 412 p. ISBN: 978-958-44-9746-8

Penn CJ; Camberato JJ. 2019. A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture 9(6):120. doi: 10.3390/agriculture9060120

R Core Team. 2023. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. r-project.org

Roshinus A; Princely N; Palmer B; Kfuban BP. 2021. Characterization of agroforestry systems and their effectiveness in soil fertility enhancement in the south-west region of Cameroon. Current Research in Environmental Sustainability 3:100024. doi: 10.1016/j.crsust.2020.100024

Sadeghian S; Rivera JM; Gómez ME. 1999. Impacto de sistemas de ganadería sobre las características físicas, químicas y biológicas de suelos en los Andes de Colombia. En: Sanchez MD; Rosales Méndez M, eds. Memorias de una conferencia electrónica sobre Agroforestería para la producción animal en Latinoamérica. Estudio FAO producción y sanidad animal. Fundación CIPAV y FAO, Roma, Italia 143:77–95. bit.ly/3kifous

Sayer EJ; Rodtassana C; Sheldrake M; Bréchet LM; Ashford OS; Lopez-Sangil L; Kerdraon-Byrne D; Castro B; Turner BL; Wright SJ; Tanner EVJ. 2020. Revisiting nutrient cycling by litterfall: Insights from 15 years of litter manipulation in old-growth lowland tropical forest. En: Dumbrell AJ; Turner EC; Fayle TM, eds. Advances in Ecological Research 62:173–223. doi: 10.1016/bs.aecr.2020.01.002

Sellan G; Thompson J; Majalap N; Robert R; Brearley FQ. 2020. Impact of soil nitrogen availability and pH on tropical heath forest organic matter decomposition and decomposer activity. Pedobiologia 80:150645. doi: 10.1016/j.pedobi.2020.150645

Sierra J; Nygren P. 2006. Transfer of N fixed by a legume tree to the associated grass in a tropical silvopastoral system. Sol Biology and Biochemistry 38(7):1893–1903. doi: 10.1016/j.soilbio.2005.12.012

Van Dijk M; Morley T; Rau ML; Saghai Y. 2021. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nature Food 2(7):494–501. doi: 10.1038/s43016-021-00322-9

Yang Xioyan; Chen Xiangwei; Yang Xitian. 2019. Effect of organic matter on phosphorus adsorption and desorption in a black soil from Northeast China. Soil and Tillage Research 187:85–91. doi: 10.1016/j.still.2018.11.016

Zhu Xiai; Zou Xin; Lu Enfu; Deng Yun; Luo Yan; Chen Hui; Liu Wenjie. 2021. Litterfall biomass and nutrient cycling in karst and nearby non-karst forests in tropical China: A 10-year comparison. Science of The Total Environment 758:143619. doi: 10.1016/j.scitotenv.2020.143619

Cómo citar

Ocampo, L. E., Osorio, W., Martínez, J., & Cabrera, K. R. (2023). Indicadores químicos de la salud del suelo en sistemas silvopastoriles, bosque de restauración y cultivo de maíz en un bosque seco tropical. Tropical Grasslands-Forrajes Tropicales, 11(3), 220–232. https://doi.org/10.17138/tgft(11)220-232

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

2023-09-30

Número

Sección

Artículos Científicos